• 제목/요약/키워드: Gastrointestinal Microbes

검색결과 25건 처리시간 0.028초

Targeting the Gut Microbiome to Ameliorate Cardiovascular Diseases

  • Hwang, Soonjae;Park, Chan Oh;Rhee, Ki-Jong
    • 대한의생명과학회지
    • /
    • 제23권3호
    • /
    • pp.166-174
    • /
    • 2017
  • The bacterial cells located within the gastrointestinal tract (GIT) outnumber the host's cells by a factor of ten. These human digestive-tract microbes are referred to as the gut microbiota. During the last ten years, our understanding of gut microbiota composition and its relation with intra- and extra-intestinal diseases including risk factors of cardiovascular diseases (CVD) such as atherosclerosis and metabolic syndrome, have greatly increased. A question which frequently arises in the research community is whether one can modulate the gut microbial environment to 'control' risk factors in CVD. In this review, we summarized promising intervention methods, based on our current knowledge of intestinal microbiota in modulating CVD. Furthermore, we explore how gut microbiota can be therapeutically exploited by targeting their metabolic program to control pathologic factors of CVD.

Metabolism of Ginsenosides to Bioactive Compounds by Intestinal Microflora and Its Industrial Application

  • Kim, Dong-Hyun
    • Journal of Ginseng Research
    • /
    • 제33권3호
    • /
    • pp.165-176
    • /
    • 2009
  • Korean ginseng, which contains ginsenosides and polysaccharides as its main constituents, is orally administered to humans. Ginsenosides and polysaccharides are not easily absorbed by the body through the intestines due to their hydrophilicity. Therefore, these constituents which include ginsenosides Rb1, Rb2, and Rc, inevitably come into contact with intestinal microflora in the alimentary tract and can be metabolized by intestinal microflora. Since most of the metabolites such as compound K and protopanaxatriol are nonpolar compared to the parental components, these metabolites are easily absorbed from the gastrointestinal tract. The absorbed metabolites may express pharmacological actions, such as antitumor, antidiabetic, anti-inflammatory, anti-allergic, and neuroprotective effects. However, the activities that metabolize these constituents to bioactive compounds differ significantly between individuals because all individuals possess characteristic indigenous strains of intestinal bacteria. Recently, ginseng has been fermented with enzymes or microbes to develop ginsengs that contain these metabolites. However, before using these enzymes and probiotics, their safety and biotransforming activity should be assessed. Intestinal microflora play an important role in the pharmacological action of orally administered ginseng.

Chemical Diversity of Panax ginseng, Panax quinquifolium, and Panax notoginseng

  • Kim, Dong-Hyun
    • Journal of Ginseng Research
    • /
    • 제36권1호
    • /
    • pp.1-15
    • /
    • 2012
  • The major commercial ginsengs are Panax ginseng Meyer (Korean ginseng), P. quinquifolium L. (American ginseng), and P. notoginseng (Burk.) FH Chen (Notoginseng). P. ginseng is the most commonly used as an adaptogenic agent and has been shown to enhance physical performance, promote vitality, increase resistance to stress and aging, and have immunomodulatory activity. These ginsengs contain saponins, which can be classified as dammarane-type, ocotillol-type and oleanane-type oligoglycosides, and polysaccharides as main constituents. Dammarane ginsenosides are transformed into compounds such as the ginsenosides $Rg_3$, $Rg_5$, and $Rk_1$ by steaming and heating and are metabolized into metabolites such as compound K, ginsenoside $Rh_1$, proto- and panaxatriol by intestinal microflora. These metabolites are nonpolar, pharmacologically active and easily absorbed from the gastrointestinal tract. However, the activities metabolizing these constituents into bioactive compounds differ significantly among individuals because all individuals possess characteristic indigenous strains of intestinal bacteria. To overcome this difference, ginsengs fermented with enzymes or microbes have been developed.

Synthesis and properties of methylprednisolone-21sulfate sodiumas as a colon-specific prodrug of methylprednisolone

  • Kang, Hye-Sik;Kim, In-Ho;Kim, Young-Soo;Choi, Boh-Im;KIm, Hee-Jung;Kim, Young-Mi
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.177.3-177.3
    • /
    • 2003
  • Corticosteroids have been used most frequently for inflammatory bowel disease. To reduce side effects by the systemic absorption, colon-specific delivery is highly desirable. We expected that conversion of 21-hydroxyl in glucocorticoids into a sulfate ester sodium will greatly increase the hydrophilicity, which consequently restrict the gastrointestinal absorption. Once delivered to the colon, sulfate ester will be hydrolyzed by the sulfatase originated from microbes and release the parent compound, glucocorticoids. In this study, we prepared methylprednisolone 21-sulfate sodium (MPS) and investigated its suitability as a colon-specific prodrug on methylprednisolone (MP). (omitted)

  • PDF

위암과 미생물총 (Gastric Cancer and Non-Helicobacter pylori Microbiota)

  • 김유진
    • Journal of Digestive Cancer Research
    • /
    • 제12권1호
    • /
    • pp.6-14
    • /
    • 2024
  • Gastric cancer is the 4th leading cause of death worldwide. The primary cause of gastric cancer is known to be Helicobacter pylori (H. pylori). The advancement of molecular biology has enabled the identification of microbiomes that could not be confirmed through cultivation, and it has been revealed that the microbial communities vary among normal mucosa, atrophic gastritis, intestinal metaplasia, and gastric cancer. It has also been confirmed that the composition of the microbial community differs depending on the presence or absence of H. pylori. Whether changes in the microbiome are causative factors in the carcinogenesis process is not yet clear. Experiments using animal models and in vitro studies on the role of microbes other than H. pylori in the carcinogenic process are underway, but the data is still insufficient.

Metabolic, Osmoregulatory and Nutritional Functions of Betaine in Monogastric Animals

  • Ratriyanto, A.;Mosenthin, R.;Bauer, E.;Eklund, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권10호
    • /
    • pp.1461-1476
    • /
    • 2009
  • This review focuses on the metabolic and osmoregulatory functions of betaine and its impact on nutrient digestibility and performance in pigs and poultry. Betaine is the trimethyl derivative of the amino acid glycine, and is present in plant and animal tissue. It has been shown to play an important role in osmoregulation of plants, bacteria and marine organisms. Due to its chemical structure, betaine exerts a number of functions both at the gastrointestinal and metabolic level. As a methyl group donor, betaine is involved in transmethylation reactions and donates its labile methyl group for the synthesis of several metabolically active substances such as creatine and carnitine. Therefore, supplementation of betaine may reduce the requirement for other methyl group donors such as methionine and choline. Beneficial effects on intestinal cells and intestinal microbes have been reported following betaine supplementation to diets for pigs and poultry, which have been attributed to the osmotic properties of betaine. Furthermore, betaine potentially enhances the digestibility of specific nutrients, in particular fiber and minerals. Moreover, at the metabolic level, betaine is involved in protein and energy metabolism. Growth trials revealed positive effects of supplemental betaine on growth performance in pigs and poultry, and there is evidence that betaine acts as a carcass modifier by reducing the carcass fat content. In conclusion, due to its various metabolic and osmoregulatory functions, betaine plays an important role in the nutrition of monogastric animals.

비피도박테리움 롱검의 기능성과 치즈 제조에 활용 (Functional Properties of Bifidobacterium longum and Their Incorporation into Cheese Making Process)

  • 김현욱;정석근;함준상
    • Journal of Dairy Science and Biotechnology
    • /
    • 제34권2호
    • /
    • pp.75-82
    • /
    • 2016
  • Members of the genus Bifidobacterium are prevalent in the human colon and represent up to 90% of all bacteria in fecal samples of breast-fed infants, and 3~5% of adult fecal microbiota. Bifidobacteria produce organic acids, thus reducing the colon pH to a level inhibitory for pathogenic bacteria. They can also detoxify a number of toxic compounds and adhere to the colon mucosa, thus preventing the adherence of pathogens and induction of colon cancer. Recently, we identified a novel Bifidobacterium longum subsp. longum strain, KACC 91563, in a fecal sample of a Korean neonate, and demonstrated its functional properties. We showed that B. longum KACC 91563 alleviates food allergy through mast cell suppression and produces antioxidative and antihypertensive peptides by casein hydrolysis. Dairy products are considered as an ideal food system for the delivery of probiotic cultures to the human gastrointestinal tract. Cheese affords protection to probiotic microbes during gastric transit due to its relatively high pH, more solid consistency, higher fat content, and higher buffering capacity. Incorporation of B. longum KACC 91563 into cheese making is currently under study.

신바이오틱스의 생리활성에 관한 연구 고찰 (Studies on the Biological Activity of Synbiotics: A Review)

  • 윤진아;신경옥
    • 한국식품영양학회지
    • /
    • 제31권3호
    • /
    • pp.319-327
    • /
    • 2018
  • This paper defines the common features of synbiotics based on the definition of probiotics and prebiotics, and reviews the effectiveness of synbiotic food. The concept of synbiotics is defined as 'a mixture of prebiotics and probiotics that have a beneficial effect on the host, as a dietary supplement that alters living organisms in the gastrointestinal tract and improves their survival.' Synbiotic food contains ingredients with beneficial microbes that are expected to improve interactions between microbial and useful substances. Synbiotic foods may have anti-cancer and immune system-boosting effects. Improved digestion, healthier bowel movements, and overall increased intestinal health has been reported were reported after increasing the healthy microorganisms within the intestinal tract. In addition, depending on the type of food containing the symbiotic ingredients, more consistent weight control, improvement of cardiovascular health, and lower blood glucose levels may also be expected. Unlike previous studies, this review of synbiotics has shown that it is necessary for synergistic effects to take place among microorganisms and components to be further studied. Further research is needed on the safety and ingestion of microorganisms contained in synbiotics.

Oral and Human Microbiome Research

  • Chung, Sung-Kyun
    • 치위생과학회지
    • /
    • 제19권2호
    • /
    • pp.77-85
    • /
    • 2019
  • In the past gut microbiome has been the main focus of microbiome research. Studies about the microbiome inside oral cavities and other organs are underway. Studies about the relationship between noninfectious diseases and periodontal diseases, and the negative effects of harmful oral microbes on systemic health have been published in the recent past. A lot of attention is being paid towards fostering a healthy oral microbial ecosystem. This study aimed to understand the roles and effects of the microbiome inside the human body can potentially help cure various diseases including inflammatory bowel diseases with no known cure such as Crohn's disease, atopic dermatitis, obesity, cancer, diabetes, brain diseases and oral diseases. The present study examined technological trends in the correlation between the human microbiome and diseases in the human body, interactions between the human body's immunity, the metabolic system, and the microbiome, and research trends in other countries. While it has been proven that human microbiome is closely correlated with human diseases, most studies are still in the early stage of trying to compare the composition of microbiomes between health and patient groups. Since the oral environment is a dynamic environment that changes due to not only food intake but also other external factors such as lifestyle, hygiene, and drug intake, it is necessary to continue in-depth research on the microbiome composition characteristics to understand the complex functions of oral microorganisms. Analyzing the oral microbiome using computational technology may aid in disease diagnosis and prevention.

축산 환경개선제로 생산.유통되는 생균제의 문제점 및 검증방안 (Problems and Verification System of Probiotics as Livestock-environment Improving Agent Produced and Circulated)

  • 이은영
    • 한국미생물·생명공학회지
    • /
    • 제36권2호
    • /
    • pp.87-95
    • /
    • 2008
  • 생균제는 충분하고도 적절하게 사용되었을 때 숙주의 건강에 도움이 될 수 있는 살아있는 미생물이다. Lactobacilli나 Bacillus와 같은 직접투여하는 미생물 (DFM)은 생장을 촉진하기 위하여 사료에 첨가되는 항생제 혹은 식품첨가물보다 장내의 정상균총의 정착에 매우 긍정적인 효과를 보여줄 수 있다. 또한, 생균제가 투여됨으로 해서 면역체계가 강화되고, 감염에 대한 예방효과가 있는데 이는 동물 체내에 병원균이 정착하는 것을 방해함으로서 이러한 효과를 기대할 수 있다. 생균제 투여를 통해 얻을 수 있는 효과는 배설물의 분해를 촉진하여 악취를 저감시켜줌으로서 가축의 사육환경을 개선할 수 있다는 점이다. 최근 들어, 환경보호와 안전한 먹거리에 대한 새로운 패러다임이 정착됨에 따라, 환경을 개선하고 우수한 품질의 축산품을 생산하기 위해 가축농가에서는 기존의 항생제를 대체할 수 있는 대안으로서의 생균제에 대한 요구가 높아지고 거의 모든 농가에서 생균제를 사용하고 있다고 해도 무리가 없다. 국내에서 유통되는 생균제는 크게 세부류이다. 첫째는 국립수의과학독성원(NVRQS)에 의해 검증되고 약사법에 의해 관리를 받는 동물의약품으로서의 생균제, 둘째는 시군에서 등록이되는 보조사료로서의 생균제와 마지막으로 미등록된 환경개선제들이다. 그러나, 많은 검증받지 않은 제품이 유통되고 생산됨으로 인해 이를 검증할 방안마련이 시급한 실정이다. 본 연구에서는 환경개선제로서의 생균제를 검증하기 위한 방안으로, 생균수의 검증, 항생제 내성 검증, 그리고 악취제거능에 대한 검증의 3단계 방법을 제안한다.