• Title/Summary/Keyword: Gasoline industry

Search Result 60, Processing Time 0.023 seconds

Measurement and Prediction of Spray Targeting Points according to Injector Parameter and Injection Condition (인젝터 설계변수 및 분사조건에 따른 분무타겟팅 지점의 측정 및 예측)

  • Mengzhao Chang;Bo Zhou;Suhan Park
    • Journal of ILASS-Korea
    • /
    • v.28 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • In the cylinder of gasoline direct injection engines, the spray targeting from injectors is of great significance for fuel consumption and pollutant emissions. The automotive industry is putting a lot of effort into improving injector targeting accuracy. To improve the targeting accuracy of injectors, it is necessary to develop models that can predict the spray targeting positions. When developing spray targeting models, the most used technique is computational fluid dynamics (CFD). Recently, due to the superiority of machine learning in prediction accuracy, the application of machine learning in this field is also receiving constant attention. The purpose of this study is to build a machine learning model that can accurately predict spray targeting based on the design parameters of injectors. To achieve this goal, this study firstly used laser sheet beam visualization equipment to obtain many spray cross-sectional images of injectors with different parameters at different injection pressures and measurement planes. The spray images were processed by MATLAB code to get the targeting coordinates of sprays. A total of four models were used for the prediction of spray targeting coordinates, namely ANN, LSTM, Conv1D and Conv1D & LSTM. Features fed into the machine learning model include injector design parameters, injection conditions, and measurement planes. Labels to be output from the model are spray targeting coordinates. In addition, the spray data of 7 injectors were used for model training, and the spray data of the remaining one injector were used for model performance verification. Finally, the prediction performance of the model was evaluated by R2 and RMSE. It is found that the Conv1D&LSTM model has the highest accuracy in predicting the spray targeting coordinates, which can reach 98%. In addition, the prediction bias of the model becomes larger as the distance from the injector tip increases.

A Study About the Effect of Supercharging and Intake Charge on Engine Performance in Spark Ignition Gasoline Engine (SI 가솔린 엔진의 과급 및 흡기가 엔진 성능에 미치는 영향에 대한 연구)

  • Kim, Gi-Bok;Jin, Seok-Jun;Kim, Chi-Won;Yoon, Chang-Sik;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.2
    • /
    • pp.110-118
    • /
    • 2015
  • In this study, it is designed and used the test engine bed which is installed with turbocharger, and in addition to equipped using by oxygen adder. It has been controlled the oxygen volumetric fraction of intake air chrge, and supercharged flow rate into the cylinder of SI 4-stroke engine, and then, has been analyzed engine performance, combustion characteristics, and exhaust emission as analysis parameters. The tested parameters were the oxygen fraction and the variation of engine speed and air-fuel ratio.

The misfire detection using the mean exhaust pressure gradient index (평균 배기 압력 구배 지수를 이용한 실화 검출)

  • Chung, Sung-Won;Sim, Kook-Sang;Kim, Se-Woong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.4
    • /
    • pp.371-378
    • /
    • 2001
  • This paper proposes a method to detect the misfired cylinder using a new misfire detection index. The new method of misfired cylinder is a comparison of pressure gradient during the blowdown period of exhaust stroke. If a misfire occurs, the engine will he lost some power and consumes the more fuel and the torque will be unsteady. Most of all, the misfire affects a bad influence of the 3-way catalyst and emits unburned hydrocarbon in the air. To prevent these unusual phenomena and eliminate the factor of the environmental pollution, it is important to detect the misfired cylinder. To do the experiment, set up the assist device on the manifold. This assist device is not deformed for conventional exhaust manifold and installed in the end of the exhaust manifold. Experimental results showed that the method using the mean gradient pressure index is proven to be effective in the detection of misfired cylinder on gasoline engine regardless loads and revolutions of the engine.

  • PDF

Disassembly Priority for Recoverying Remanufacturable Parts(Core) in ELV (ELV에서 재제조 부품을 회수하기 위한 해체 우선순위)

  • Son, Woo Hyun;Park, Sang Jin;Mok, Hak Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.6
    • /
    • pp.591-598
    • /
    • 2019
  • Today, due to the development of the industrial society, the need for sustainable research and development for energy depletion and environmental protection is increasing. Among sustainable research, remanufacturing is an ideal way to meet environmental and economic aspects. In this paper, we investigated the End-of-Life Vehicle(ELV) in order to find the recovery method of the core which is the preceding stage of remanufacturing. The number of End-of-Life Vehicle is increasing year by year, but the core recovery rate from ELV is still low. Therefore, a methodology to determine the disassembly priority of each part is proposed to increase the core recovery rate. Based on the analysis Table through the disassembly process, the decision rule was selected and the weighted score evaluation Table was completed to complete the disassembly priority system. Finally, evaluation was made on gasoline vehicles to determine priorities.

A Study of Heat Flux and Instantaneous Temperature According to the Equivalence Ratio in a Constant Volume Combustion Chamber (정적 연소기에서 당량비 변화에 따른 순간열유속에 관한 연구)

  • 이치우
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.624-632
    • /
    • 2003
  • In the gasoline engine industry. there has been a trend towards the development of high performance engines with improved fuel efficiency, reduced weight and smaller sizes. These trends help to solved engine problems related to thermal load and abnormal combustion. In order to investigate these Problems, a thin film-type probe for instantaneously measuring temperatures has been suggested. A method for manufacturing such a probe was established in this study. The instantaneous surface temperature of a constant volume combustion chamber was measured by this probe and the heat flux was obtained through Fourier analysis. A peak instantaneous temperature was obtained after 55∼60 ms from ignition and the temperature increased according to an equivalence ratio and varied differently according to the position of the probe. Total heat loss during combustion period was affected by the equivalence ratio and differed widely in accordance to the position of the probe.

The Effect of Ethanol Mixing Rate on Engine Performance (에탄올 혼합율이 엔진성능에 미치는 영향)

  • Park, Kweon-Ha;Park, Hong-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.663-669
    • /
    • 2008
  • A rapid growth of automobile industry has become a major cause for the environmental pollution of big cities, which has driven the emission regulation into extreme. The study of alternative fuel is one of the many researches for improving car emissions. In this study, the effect of an ethanol mixing rate on the engine performance of exhaust emissions, fuel consumption and a maximum torque is assessed for a gasoline engine without any retrofit. The result shows that maximum torque is not reduced in the range of ethanol mixing rate of 10 to 15%. CO and NOx is reduced with the increase of ethanol mixing rate and the fuel consumption remains in similar level.

Real Option Valuation in the Refinery Industry

  • Lee, Yu-Tae;Lee, Chang-Gyu
    • The Korean Journal of Financial Studies
    • /
    • v.7 no.1
    • /
    • pp.171-195
    • /
    • 2001
  • 본 연구의 목적은 실물옵션이론을 바탕으로 정유회사의 가치평가기법을 제공하는 것이다. 정유회사는 가치평가를 위해서 회계적 가치외에 관리적 유연성(managerial flexibility)을 고려해야 하기 때문에 기존의 DCF방법을 적용하기 보다는 실물옵션방법을 이용하여야 한다. 관리적 유연성은 회사관리자가 적용가능한 생산관리적 기법으로서 회사의 미래현금흐름에 영향을 주고 따라서 회사의 가치에 영향을 미친다. DCF방법은 이러한 관리적 유연성을 적절히 고려하지 못하여 회사의 가치를 저평가하는 오류를 발생시킨다. 반면 실물옵션방법은 관리적 유연성을 가치평가에 있어서 주요 변수를 인식하기 때문에 정확한 가치평가의 수단이 된다. 옵션가격결정을 위한 기초자산은 크랙스프레드(crack Spread)이다. 크랙스프레드는 경유(heating oil)와 무연휘발유(unleaded gasoline)의 가격과 원유(crude oil) 가격의 차이를 나타내며 정유회사의 정유순익(gross refining margin)을 대표한다. 실물옵션방법에 의한 정유회사의 가치는 DCF방법에 의한 가치보다 두 배가 크다는 결론을 제시한다. 즉 관리적 유연성이 존재하는 회사의 경우는 가치평가에 있어서 실물옵션방법을 이용하여 가치를 저평가하는 오류를 범하지 않아야 한다.

  • PDF

Optimization of Two-Step Cold Drawing for Upper Arch-Shape Solid Type Austenitic Stainless Steel (상단 아치 형상 중실 오스테나이트계 스테인리스강의 2단 인발 공정 최적화)

  • Bae, S.J.;Kim, J.H.;Hong, S.B.;Hong, S.K.;Namkung, J.;Lee, K.S.
    • Transactions of Materials Processing
    • /
    • v.31 no.6
    • /
    • pp.394-403
    • /
    • 2022
  • In the automotive industry, cold-drawn austenitic stainless steel is commonly used to handle high fuel pressures in gasoline direct injection (GDI) engines. In this study, we analyzed the effects of main process variables such as cross-sectional shape, drawing speed and friction coefficient on the microstructure, hardness and residual stress of the drawn material in the two-step cold drawing process. By changing the cross-sectional shape in the first-step cold drawing, the possibility of improving the shape accuracy or physical properties of the finally cold-drawn fuel rail pressure sensor product was investigated.

Japanese mold technology revolutionizing the mold industry (금형 산업을 변혁하는 일본의 금형 기술)

  • Jeong-Won Lee;Yong-Dae Kim;Sung-Hee Lee
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.21-27
    • /
    • 2023
  • The mold industry in Japan, an advanced country in the mold industry, is also at a point of great change. The main causes are the Ukraine crisis and the collapse of the global supply chain (parts supply chain) caused by COVID-19. In addition, the prices of overseas products are rising sharply due to rapid exchange rate fluctuations (decrease in the value of the yen). Until now, Japan's monotsukuri industry has been actively pursuing overseas expansion, riding the trend of globalization. However, the trend began to rapidly reverse, and now the monotsukuri industry that had expanded overseas is showing a tendency to return to Japan. Another factor of change is the change in the automobile industry, which is the most demanded product in the mold industry. As the automobile industry evolves from gasoline cars to electric cars, the number of parts that make up a car will drastically decrease. This trend is expected to increase the demand for small-scale production of a variety of products in the mold industry, and furthermore, it is expected that short delivery times will be required in parts development. As in Korea, the production population working in the mold industry is rapidly decreasing in Japan as well. Even if you add up the total population working in manufacturing in Japan, it only accounts for about 15%. Even in Japan, it is judged that it will be difficult to sustain the monotsukuri industry with this small production population. Therefore, since improvement in production efficiency cannot be expected with the same manual dexterity as before, the mold industry is also demanding the development of mold technology at a different level than before to increase productivity. In this paper, I would like to introduce new Japanese mold technology collected through attending the Intermold exhibition. This is an example of applying a dedicated pin (Gastos) to a mold to prevent an increase in internal pressure during plastic injection molding, and a deep drawing press molding technology with an inherent hydraulic function.

Application of a Modified Sublimation Method to Screen for PAH-Degrading Microorganisms (다환 방향족 탄화수소(PAH) 분해 미생물 탐색을 위한 승화법의 개발)

  • Kwon, Tae-Hyung;Kim, Jun-Tae;Kim, Jong-Shik
    • Korean Journal of Microbiology
    • /
    • v.46 no.1
    • /
    • pp.109-111
    • /
    • 2010
  • Recent studies have described various microorganisms that can degrade PAH, however, there are currently limited methods available to screen for PAH-degrading microorganisms. To screen for PAH-degrading microorganisms, a sublimation method (Alley, Jeremy F. and Lewis R. Brown. 2000. Appl. Environ. Microbiol. 66, 439-442) was modified to produce a simple screening system. In our results, there were several bacterial species capable of pyrene degradation including genera, Coryenbacterium, Gordonia, Rhodococcus, and Streptomyces, which have been screened from 350 bacterial isolates of commercial gasoline and oil-spilled sediment by the sublimation method. The main advantage of this method is that it (i) safely deposits an even, thin and visible layer of PAH onto the agar surface without the use of solvents and (ii) the quantity of PAH sublimed onto the agar can be easily controlled. Overall, this sublimation method may be an effective and simple technique to screen for PAH-degrading microorganisms.