• Title/Summary/Keyword: Gasoline direct injected

Search Result 37, Processing Time 0.021 seconds

An Experimental Study on the Spray and Lean Combustion Characteristics of Bio-enthanol-Gasoline Blended Fuel of GDI (직접분사식 바이오에탄올-가솔린 혼합연료의 분무 및 희박연소 특성에 관한 실험적 연구)

  • Park, Gi-Young;Kang, Seok-Ho;Kim, In-Gu;Lim, Cheol-Soo;Kim, Jae-Man;Cho, Yong-Seok;Lee, Seong-Wock
    • Journal of ILASS-Korea
    • /
    • v.19 no.3
    • /
    • pp.115-122
    • /
    • 2014
  • As a demand for an automobile increases, air pollution and a problem of the energy resources come to the fore in the world. Consequently, governments of every country established ordinances for green-house gas reduction and improvement of air pollution problem. Especially, as international oil price increases, engine using clean energy are being developed competitively with alternative transportation energy sources development policy as the center. Bio ethanol, one of the renewable energy produced from biomass, gained spotlight for transportation energy sources. Studies are in progress to improve fuel supply methods and combustion methods which are key features, one of the engine technologies. DI(Direct Injection), which can reduce fuel consumption rate by injecting fuel directly into the cylinder, is being studied for Green-house gas reduction and fuel economy enhancement at SI(Spark Ignition). GDI(Galoine Direct Injection) has an advantage to meet the regulations for fuel efficiency and $CO_2$ emissions. However it produces increased number of ultrafine particles, that yet received attention in the existing port-injection system, and NOX. As fuel is injected into the cylinder with high-pressure, a proper injection strategy is required by characteristics of a fuel. Especially, when alcohol type fuel is considered. In this study, we tried to get a base data bio-ethanol mixture in GDI, and combustion for optimization. We set fuel mixture rate and fuel injection pressure as parameters and took a picture with a high speed camera after gasoline-ethanol mixture fuel was injected into a constant volume combustion chamber. We figured out spraying characteristic according to parameters. Also, we determine combustion characteristics by measuring emissions and analyzing combustion.

A Study on the Injection Characteristics of Direct Injection CNG Fuel (직접분사 CNG 연료의 분사특성에 관한 연구)

  • Lee, S.W.;Rogers, T.;Petersen, P.;Kim, I.G.;Kang, H.I.
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.6
    • /
    • pp.643-647
    • /
    • 2014
  • Two types of fuel supply method ar used in CNG vehicles. One is premixed ignition and the other is gas-jet ignition. In premixed ignition, the fuel is introduced with intake air so that homogeneous air-fuel mixture may form. The ignitability of this method depends on the global equivalence ratio. In gas-jet ignition, CNG is introduced directly into the engine combustion chamber. The overall mixture is stratified by retarded fuel injection. In this study, a visualization technique was employed to obtain fundamental properties regarding overall mixture formation of direct injected CNG fuel inside a constant volume chamber. Jet angles, penetrations and projected jet area with respect to ambient pressure are investigated. The penetration decreases apparently and the time reaching the CVC wall was delayed as the chamber pressure increases. This is caused by the higher inertia of the fluid elements that the injected fluid must accelerate and push aside. It is same to liquid fuel such as diesel and gasoline, but this phenomenon is far more prominent for the gaseous fuel.

Improvement of Compression Ignition for Gasoline Fuel Injected in the Diesel Engine (디젤기관에 분사되는 가솔린연료의 압축착화성 향상)

  • Choi, Yoon-Jong;Lee, Joon-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.26-31
    • /
    • 2011
  • In this study, it made to run conventional single direct injection(DI) diesel engine, which adapted bulk combustion system not following spark ignition system without any ignition apparatus. It was heated and controlled inlet-air into conventional single DI diesel engine. The maximum value of brake thermal efficiency was at 35 region of air-fuel ratio. On the contrary, when the region of air-fuel ratio leaner than 35, brake thermal efficiency was decreased suddenly. And brake thermal efficiency was increased as much as inlet-air heating temperature increased. So, when air-fuel ratio was decreased and inlet-air heating temperature was higher, the engine was in optimal operation condition.

An Experimental Study on the Stratified Combustion Characteristics in a Direction Injection Gasoline Engine (직접 분사식 가솔린 엔진을 이용한 성층 연소 특성에 관한 실험적 연구)

  • Lee, Chang-Hee;Lee, Ki-Hyung;Lim, Kyoung-Bin;Kim, Bong-Gyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.121-126
    • /
    • 2006
  • A gasoline-fueled stratified charge compression ignition (SCCI) engine with both direct fuel injection and intake temperature and compression ratio was examined. The fuel was injected directly by using the high temperature resulting from heating intake port. With this injection strategy, the SCCI combustion region was expanded dramatically without any increase in NOx emissions which were seen in the case of compression stroke injection. Injection timing during the intake temperature was found to be an important parameter that affects the SCCI region width. The effect of mixture stratification and the effect of fuel reformation can be utilized to reduce the required intake temperature for suitable SCCI combustion under each set of engine speed and compression ratio conditions.

An Experimental Study on the Ignition Probability and Combustion Flame Characteristics of Spark-Ignited Direct-Injection CNG (스파크점화직분식 CNG의 점화성 및 연소화염 특성에 대한 연구)

  • Hwang, Seongill;Chung, Sungsik;Yeom, Jeongkuk;Jeon, Byongyeul;Lee, Jinhyun
    • Journal of ILASS-Korea
    • /
    • v.21 no.1
    • /
    • pp.37-46
    • /
    • 2016
  • For the SI engines, at only full load, the pumping loss has a negligible effect, while at part load conditions, the pumping loss increases. To avoid the pumping loss, the spark-ignited engines are designed to inject gasoline directly into the combustion chamber. In the spark-ignited direct-injection engines, ignition probability is important for successful combustion and the flame propagation characteristics are also different from that of pre-mixed combustion. In this paper, a visualization experiment system is designed to study the ignition probability and combustion flame characteristics of spark-ignited direct-injection CNG fuel. The visualization system is composed of a combustion chamber, fuel supply system, air supply system, electronic control system and data acquisition system. It is found that ambient pressure, ambient temperature and ambient air flow velocity are important parameters which affect the ignition probability of CNG-air mixture and flame propagation characteristics and the injected CNG fuel can be ignited directly by a spark-plug under proper ambient conditions. For all cases of successful ignition, the flame propagation images were digitally recorded with an intensified CCD camera and the flame propagation characteristics were analyzed.

Effect of Premixed Fuels Charge on Exhaust Emission Characteristics of HCCI Diesel Engine (HCCI 디젤엔진의 배기특성에 미치는 예혼합 연료의 영향)

  • Kim Myung Yoon;Yoon Young Hoon;Hwang Suk Jun;Kim Dae Sik;Lee Chang Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.182-189
    • /
    • 2005
  • In order to investigate the effect of premixed gasoline, diesel fuel, and n-heptane charges on the combustion and exhaust emission characteristics in a direct injection (DI) diesel engine, the experimental studies are performed. The premixed fuels are injected into the premixing chamber that installed upstream of the intake port in order to minimize the inhomogeneity effect of premixed charge. The injection nozzle for directly injected fuel is equipped in the center of the combustion chamber. The air temperature control system is equipped in the intake manifold to examine the effect of air temperature. The experimental results of this study show premixing fuel is effective method to reduce the NOx and soot emissions of diesel engine. NOx emissions are linearly decreased with increasing premixed ratio for the three kinds of premixed fuels. The heating of intake air $(80^{\circ}C)$ reduced the deterioration of BSFC in high premixed ratio, because it promotes evaporation of premixed diesel droplet in the premixing chamber.

An Experimental Study on Spray Characteristics of Directly Injected Bio-Ethanol-Gasoline Blended Fuel By Varying Fuel Temperature (직접분사식 바이오 에탄올-가솔린 혼합연료의 연료온도에 따른 분무 특성에 관한 실험적 연구)

  • Lee, Seangwook;Park, Giyoung;Kim, Jongmin;Park, Bongkyu
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.6
    • /
    • pp.636-642
    • /
    • 2014
  • As environment problem became a worldwide issue, countries are tightening regulations regarding greenhouse gas reduction and improvement of air pollution problems. With these circumstances, one of the renewable energies produced from biomass is getting attention. Bio-ethanol, which is applicable to SI engine, showed a positive effect on the PFI (Port Fuel Injection) type. However, Ethanol has a problem in homogeneous mixture formation because it has high latent heat of vaporization characteristics and in the GDI (Gasoline Direct Injection) type, mixture formation is required quickly after fuel injection. Particularly, South Korea is one of the countries with great temperature variation among seasons. With this reason, South Korea supply fuel additive for smooth engine operation during winter. Therefore, experimental study and investigation about application possibility of blending fuel is necessary. This paper demonstrates the spray characteristics by using the CVC direct injection and setting the bio-ethanol blending fuel temperature close to the temperature during each seasons: -7, 25, $35^{\circ}C$. The diameter and the width of the CVC are 86mm and 39mm. High-pressure fuel supply system was used for target injection pressure. High-speed camera was used for spray visualization. The experiment was conducted by setting the injection pressure and ambient pressure according to each temperature of bio-ethanol blending fuel as a parameter. The result of spray visualization experiment demonstrates that as the temperature of the fuel is lower, the atomization quality is lower, and this increase spray penetration and make mixture formation difficult. Injection strategy according to fuel temperature and bio-ethanol blending rate is needed for improving characteristics.

Effect of Injection Conditions on the Spray Behaviors of the Multi-hole GDI Injector (분사 조건이 다공형 GDI 인젝터의 분무 거동에 미치는 영향)

  • Park, Jeong-Hwan;Park, Su-Han;Lee, Chang-Sik;Park, Sung-Wook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.116-122
    • /
    • 2012
  • The purpose of this study is to investigate the overall spray behavior characteristics for various injection conditions in a gasoline direct injection(GDI) injector with multi-hole. The spray characteristics, such as the spray penetration, the spray angle, and the injection quantity, were studied through the change of the injection pressure, the ambient pressure, and the energizing duration in a high-pressure chamber with a constant volume. The n-heptane with 99.5% purity was used as the test fuel. In a constant volume chamber, the injected spray was visualized by the spray visualization system, which consisted of the high-speed camera, the metal-halide lamp, the injector control device, and the image analysis system with the image processing program. It was revealed that the injection quantity was mainly affected by the difference between the injection pressure and the ambient pressure. For low injection pressure conditions, the injection quantity was decreased by the increase of the ambient pressure, while it nearly maintained regardless of the ambient pressure at high injection pressure. According to the increase of the ambient pressure in the constant volume chamber, the spray development became slow, consequently, the spray tip penetration decreased, and the spray area increased. In additions, the circular cone area decreased, and the vortex area increased.

Simulation Injection Mass with Variable Injection Condition in GDI Engine using AMESim (AMESim을 이용한, GDI 엔진에서 연료의 분사조건 변화에 따른 분사량 변화 예측)

  • Shin, Suk Shin;Song, Jingeun;Park, Jongho
    • Journal of ILASS-Korea
    • /
    • v.18 no.1
    • /
    • pp.61-65
    • /
    • 2013
  • In case of GDI engine, shape of injected fuel and injection mass are one of the most important factors for good fuel efficiency and power. But it should be too inefficient and difficult to acquire injection mass data by experiment because condition in engine vary with temperature, pressure, and so on. So, this paper suggests the AMESim (Advanced Modeling Environment for Simulation of Engineering Systems) as simulation program to calculate injection mass. For both simulation and experiment, n-heptane is used as fuel. In AMESim, I modeled the GDI injector and simulated several cases. In experiment, I acquired the injection mass using Bosch method to apply ambient pressure. The AMESim show reasonable result in comparison with experimental data especially at injection pressure 15 MPa. Other conditions are also in good accord with experimental data but error is a little bit large because the injection mass is so low.

In-Cylinder Phenomena in a Swirl Type GDI Engine (스월형 GDI 엔진의 연소실내 현상 연구)

  • 김기성;박상규
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.75-90
    • /
    • 2001
  • For the purpose of helping development of a GDI(Gasoline Direct Injection) engine, the in-cylinder phenomena, such as the spray behaviors and fuel distributions, unburned fuel, and flame characteristics were investigated in a single cylinder GDI engine. The GDI engine was equipped with a swirl type electronic injector and SCV(Swirl Control Valve). PLIF(Planar Laser Induced Fluorescence) system with KrF Excimer laser was used for the measurements of the fuel distributions. The effects of the injector specifications, such as the spray cone angle and the offset angle on the fuel distributions and combustion characteristics were investigated. As a result, it was found that the injected fuel spray collided with the bottom of the bowl and moved upward along the exhaust side wall of the piston bowl. This fuel vapor played a important role in the instance of spark ignition. The injector specifications has a great influence on the flame characteristics.

  • PDF