• Title/Summary/Keyword: Gasoline Vehicle

Search Result 254, Processing Time 0.025 seconds

Fire Safety evaluation of High Pressure Hydrogen System for FCEV (연료전지차량용 고압수소저장시스템의 화재 안전성 평가)

  • Choi, Young-Min;Jang, Gyu-Jin;Kim, Sang-Hyun;Hang, Ki-Ho;Hang, In-Cheol;Ahn, Byung-Ki;Lim, Tae-Won
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.3
    • /
    • pp.188-193
    • /
    • 2009
  • Fuel cell vehicles are equipped with Pressure Relief Devices(PRDs) installed in pressure tank cylinder to prevent the explosion of the tank during a fire. PRDs are safety devices that perceive a fire and release gas in the pressure tank cylinder before it is exploded. But if the PRD does not actuate, because either the PRD fails or can't be surrounded by the flame of a fire, the tank will rupture and produce a blast wave and hydrogen fire ball. In this paper, we observed the fire behavior of actual fuel cell vehicle, comparing with that of gasoline vehicle.

Lithium-Ion Batteries for Plug-In Hybrid Electric Vehicle (플러그인 하이브리드자동차용 리튬이온 이차전지)

  • Cho, Mann;Son, Young-Mok;Nah, Do-Baek;Kil, Sang-Cheol;Kim, Sang-Woo
    • Journal of Energy Engineering
    • /
    • v.19 no.2
    • /
    • pp.81-91
    • /
    • 2010
  • Plug-in hybrid electric vehicles(PHEVs) are gaining attention over the world due to their abilities to reduce $CO_2$ emission and gasoline/diesel consumption by using electricity from the grid. Lithium ion battery is one of the most suitable candidates as energy storage device for PHEVs applications up to 2030. This review focuses on the present status of lithium ion battery technology, then on comparison of the performance characteristics of the promising cathode materials.

Exhaust Emissions Characteristics of Bi-fuel CNG/LPG Passenger Cars (CNG/LPG Bi-fuel 승용차의 배출가스 특성)

  • Cho, Chong-Pyo;Lee, Young-Jae;Kim, Gang-Chul;Kwon, Oh-Seuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.142-147
    • /
    • 2011
  • Compressed natural gas (CNG) is well known as one of the cleanest burning alternative fuels. Bi-fuel CNG vehicle can also run on gasoline or another fuel while dedicated natural gas vehicle is designed to run on natural gas only. Recently, increased attention has been focused on bi-fuel CNG/LPG taxi because of good fuel economy of CNG. A number of LPG taxis modified to CNG Bi-fuel vehicles are running in many cities. In this paper, the emissions characteristics of in-use passenger cars running on CNG and LPG were investigated. Chassis dynamometer test was used to measure exhaust emissions from an in-use fleet of 5 cars. Exhaust emissions were collected for CVS-75 driving mode. The test results showed that for CNG fuel mode, CO, $CO_2$ and NMHC emissions decreased to 9%, 12% and 14% respectively, and $CH_4$ and $NO_x$ emissions increased to 317% and 47% respectively.

Performance analysis of an organic Rankine cycle for waste heat recovery of a passenger car (승용차 폐열 회수용 유기 랭킨 사이클 성능 분석)

  • Kim, Hyun-Jin;Moon, Je-Hyeon;Yu, Je-Seung;Lee, Young-Sung
    • Journal of Power System Engineering
    • /
    • v.17 no.2
    • /
    • pp.87-94
    • /
    • 2013
  • Applicability of organic Rankine cycle for a passenger car with 3.5 L gasoline engine to convert low grade waste heat to useful shaft power has been numerically studied. Working fluid is R134a, and the Rankine cycle is composed of boiler for recovering engine cooling water heat, super heater for recovering exhaust gas heat, scroll expander for converting waste heat to shaft power, condenser for heat emission, internal heat exchanger, and feed pump. Assuming efficiencies of 90% for the heat exchangers, 75% for the scroll expander, and 80% for the feed pump, the Rankine cycle efficiency of 5.53% was calculated at the vehicle speed of 120 km/hr. Net expander shaft output after subtracting the power required to run the pump was 3.22 kW, which was equivalent to 12.1% improvement in fuel consumption. About the same level of improvement in the fuel consumption was obtained over the vehicle speed range of 60 km/hr~120 km/hr.

Application of Representative $PM_{2.5}$ Source Profiles for the Chemical Mass Balance Study in Seoul

  • Kang, Choong-Min;Kang, Byung-Wook;SunWoo, Young;Lee, Hak-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.E1
    • /
    • pp.32-43
    • /
    • 2008
  • Source samples were collected to construct source profiles for 9 different source types, including soil, road dust, gasoline/diesel-powered vehicles, a municipal incinerator, industrial sources, agricultural/biomass burning, marine aerosol, and a coal-fired power plant. Seasonal profiles for 'Chinese aerosol', aerosols derived from the urban area of China, were reconstructed from seasonal $PM_{2.5}$ compositions reported in Beijing, China. Ambient $PM_{2.5}$ at a receptor site was also measured during each of the four seasons, from April 2001 to February 2002, in Seoul. The Chemical Mass Balance receptor model was applied to quantify source contributions during the study period using the estimated source profiles. Consequently, motor vehicle exhaust (33.0%), in particular 23.9% for diesel-powered vehicles, was the largest contributor affecting the $PM_{2.5}$ levels in Seoul, followed by agricultural/biomass burning (21.5%) and 'Chinese aerosol' (13.1%), indicating contributions from long-range transport. The largest contributors by season were: for spring, 'Chinese aerosol' (31.7%); for summer, motor vehicle exhaust (66.9%); and for fall and winter, agricultural/biomass burning (31.1% and 40.1%, respectively). These results show different seasonal patterns and sources affecting the $PM_{2.5}$ level in Seoul, than those previously reported for other cities in the world.

A Study on the Strategy of Smart Charging System to Charge the PHEV in the House Which has a 1 kW Fuel Cell Cogeneration System (1 kW 급 가정용 연료전지 코제너레이션 시스템이 설치된 주택 내 플러그인 하이브리드 자동차의 스마트 충전전략 연구)

  • Roh, Chul-Woo;Kim, Min-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.838-843
    • /
    • 2008
  • Cause of struggling to escape from dependency of fossil fuels, the fuel cell and the Plug-in Hybrid Electric Vehicle (PHEV) draw attention in the all of the world. Especially, the Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems have been anticipated for next generation's energy supplying system, and we can predict the PHEV will enlarge the market share in the next few years to reduce not only the air pollution in the metropolis but the fuel-expenses of commuters. This paper presents simulation results about the strategy of smart charging system for PHEV in the residential house which has 1 kW PEMFC cogeneration system. The smart charging system has a function of recommending the best time to charge the battery of PHEV by the lowest energy cost. The simulated energy cost for charging the battery based on the electricity demand data pattern in the house. The house which floor area is $132\;m^2$ (40 pyeong.). In these conditions, the annual gasoline, electricity, and total energy cost to fuel the PHEV versus Conventional Vehicle (CV) have been simulated in terms of cars' average life span in Korea.

  • PDF

The Effect on the Combustion and Emission Characteristics of HCNG Engine According to the High Purity Hydrogen Contents (고순도 수소함량에 따른 HCNG 연소특성 및 배출가스 영향 평가)

  • Lee, Jong-Tae;Lim, Yun-Sung;Kim, Hyung-Jun;Lee, Seong-Wook;Lee, Jang-Hoon;Kim, Jong-Geu
    • Journal of ILASS-Korea
    • /
    • v.17 no.3
    • /
    • pp.152-157
    • /
    • 2012
  • This investigation decribes the effect of the combustion and emission characteristics of HCNG engine according to the high purity hydrogen contents. The HCNG fuel was made by the mixture with a high purity hydrogen ($H_2$) and a natural gas. The test vehicle was applied to the bi-fuel (Gasoline and CNG) system and this system was modified from the fuel supply and fuel tank. In addition, the three premixed HCNG fuels with mixed rate of 10, 20 and 30% of hydrogen were used to maintain the safety. In order to analyze the combustion characteristics of HCNG and CNG, the fuel was injected in the combustor with constant volume. The exhaust emission from light duty vehicle with bi-fuel system was analyzed by a chassis dynamometer and emission analyzer. From these results, the reduction rate of NOx emission increased in the HCNG fuel and emission amount of THC and CO shows a similar level with CNG fuel. This study can be utilized the basic data for the development of a new business plans related with HCNG engines.

Intelligent AQS System with Artificial Neural Network Algorithm and ATmega128 Chip in Automobile (신경회로망 알고리즘과 ATmega128칩을 활용한 자동차용 지능형 AQS 시스템)

  • Chung Wan-Young;Lee Seung-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.539-546
    • /
    • 2006
  • The Air Quality Sensor(AQS), located near the fresh air inlet, serves to reduce the amount of pollution entering the vehicle cabin through the HVAC(heating, ventilating, and air conditioning) system by sending a signal to close the fresh air inlet door/ventilation flap when the vehicle enters a high pollution area. The sensor module which includes two independent sensing elements for responding to diesel and gasoline exhaust gases, and temperature sensor and humidity sensor was designed for intelligent AQS in automobile. With this sensor module, AVR microcontroller was designed with back propagation neural network to a powerful gas/vapor pattern recognition when the motor vehicles pass a pollution area. Momentum back propagation algorithm was used in this study instead of normal backpropagation to reduce the teaming time of neural network. The signal from neural network was modified to control the inlet of automobile and display the result or alarm the situation in this study. One chip microcontroller, ATmega 128L(ATmega Ltd., USA) was used for the control and display. And our developed system can intelligently reduce the malfunction of AQS from the dampness of air or dense fog with the backpropagation neural network and the input sensor module with four sensing elements such as reducing gas sensing element, oxidizing gas sensing element, temperature sensing element and humidity sensing element.

Evaluating GHG Emissions Reduced by Real-time Traffic Information in Gasoline Vehicle (실시간교통정보 이용에 따른 가솔린차량의 온실가스 저감효과 평가)

  • Kim, Jun-Hyung;Um, Jung-Sup
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.4
    • /
    • pp.443-453
    • /
    • 2011
  • Real-time Traffic Information Service could play a key role in reducing incomplete combustion time remarkably since it can provide traffic information in real-time basis. Emission characteristics of test engines were studied in terms of travel distance and speed. The present study focused on a north district in Daegu, 12 km. The driving for the emission test was done at 8AM, 3PM, 7PM which represents various traffic conditions. The reduced emissions of Greenhouse Gases (GHG) have been measured for a travel distance running at different loads (conventional shortest route and Real-time Traffic Information) and GHG ($CO_2$, $CH_4$, $N_2O$) are all inventoried and calculated in terms of existing emission factors. The emission of GHG has been shown to reduce linearly with travel distance: $CO_2$ (9.15%), $CH_4$ (18.43%), $N_2O$(18.62%).

A Study on the Reduction of Diesel-Engine Emissions (디젤엔진 배기가스의 저감에 관한 연구)

  • Hur, Youn-Bok;Chung, Soon-Suk;Kim, Kwang-Soo
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2012.11a
    • /
    • pp.245-252
    • /
    • 2012
  • Internal engine is the main power source of vehicle and is the main source of air pollution. To satisfy this getting rigorous emission regulation, it must be solved simultaneously the dilemma of reducing emission gas and increasing heat efficiency. Diesel engine is preferred compare with gasoline engine in aspect of energy consumption but it must be solved reducing the containing of NOx, CO and HC. In this study 1. Looking for alternative of performance improvement of Exhaust Gas Recirculation(EGR) which is emission gas reduction system, 2. Reducing malfunction of controlling emission gas 3. Made possible precision control.

  • PDF