• 제목/요약/키워드: Gases Concentrations

검색결과 284건 처리시간 0.026초

서울시 대기 중 $H_2O_2$의 농도 (Hydrogen Peroxide Concentrations in Air in Seoul)

  • 강충민;김희강
    • 한국대기환경학회지
    • /
    • 제16권1호
    • /
    • pp.61-68
    • /
    • 2000
  • Gas-phase hydrogen peroxide(H2O2) concentrations were measured to investigate it's distribution in the ambient air in downtown Seoul(Kwanghwamum and Mullae-dong). These measurements were made during four season, from April 30, 1998 to January 29, 1999, using Cold Trap and HPLC. Measurements were also made of other photochemical oxidants and trace gases(O3, NO2, CO and SO2) and meteorological parameters(relative humidity, temperature, solar radiation and wind speed). The mean of all observations was 0.10 ppbv and the range measured was below the level of detection(>0.01 ppbv) to 0.47ppbv. The higher seasonal mean concentrations showed during the summer(0.21 ppbv) and concentrations of H2O2 showed a diurnal variation with maximum concentrations in the afternoon(12:30∼14:00). The results from the corrrelation analysis showed that the concentration of gaseous H2O2 is strongly dependent on the other air pollutants(NO2, CO and O3) and meteorological parameters(relative humidity, temperature and solar radiation.)

  • PDF

Pattern recognition using AC treatment for semiconductor gas sensor array

  • Nguyen, Viet-Dung;Joo, Byung-Su;Huh, Jeung-Su;Lee, Duk-Dong
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅲ
    • /
    • pp.1549-1552
    • /
    • 2003
  • Semiconductor gas sensor using tin oxide as sensing material has been used to detect gases based on the fact that impedance of the sensing material varies when the gas sensor is exposed to the gases. This variation comprises of two parts. The first one is variation in resistance of the sensing material and the other is expressed in terms of the sensor capacitance variation. Normally, only variation of the sensor resistance is considered. In this paper, using AC measurement with a capacitor-coupled inverting amplifier circuit, both changes in the sensor resistance and variations in the sensor capacitance were investigated. These characteristics were represented as magnitude gain and phase shift of AC signal at a specific frequency after passing it through the sensor and the designed circuit. A two-stage artificial neural network, which utilized the information above, was employed to identify and quantify three combustible gases: methane, propane and butane. The network outputs were approximately proportional to concentrations of test gases with reasonable level of error.

  • PDF

Highly Porous Tungsten Oxide Nanowires As Resistive Sensor for Reducing Gases

  • Nguyen, Minh Vuong;Hoang, Nhat Hieu;Jang, Dong-Mi;Jung, Hyuck;Kim, Do-Jin
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.16.1-16.1
    • /
    • 2011
  • Gas sensor properties of $WO_3$ nanowire structures have been studied. The sensing layer was prepared by deposition of tungsten metal on porous single wall carbon nanotubes followed by thermal oxidation. The morphology and crystalline quality of $WO_3$ material was investigated by SEM, TEM, XRD and Raman analysis. A highly porous $WO_3$ nanowire structure with a mean diameter of 82 nm was obtained. Response to CO, $NH_3$ and $H_2$ gases diluted in air were investigated in the temperature range of $100{\sim}340^{\circ}C$ The sensor exhibited low response to CO gas and quite high response to $NH_3$ and $H_2$ gases. The highest sensitivity was observed at $250^{\circ}C$ for $NH_3$ and $300^{\circ}C$ for $H_2$. The effect of the diameters of $WO_3$ nanowires on the sensor performance was also studied. The $WO_3$ nanowires sensor with diameter of 40 nm showed quite high sensitivity, fast response and recovery times to $H_2$ diluted in dry air. The sensitivity as a function of detecting gas concentrations and gas sensing mechanism was discussed. The effect of dilution carrier gases, dry air and nitrogen, was examined.

  • PDF

Emission Reduction of Air Pollutants Produced from Chemical Plants

  • Lee, Byeong-Kyu;Cho, Sung-Woong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제15권E호
    • /
    • pp.29-38
    • /
    • 1999
  • This study identified emission sources and emissions of air pollutants such as volatile organic compounds (VOCs), solvents, and acid gases produced from chemical plants. We collected air samples from various processes, reactors and facilities using VOC detectors and workers' experience. We identified chemical structures and emission concentrations of air pollutants. We analyzed total emissions of air pollutants emitted from the chemical plants. Also, we developed some emission reduction technologies based on chemical types and emission situations of the identified air pollutants. For reduction of air emissions of acid gases, we employed a method improving solubility of pollutants by reducing scrubber operation temperature, increasing surface area for effective contact of gas and liquid, and modifying or changing chemicals used in the acid scrubbers. In order to reduce air emissions of both amines and acid gases, which have had different emission sources each other but treated by one scrubber, we first could separate gas components. And then different control techniques based on components of pollutants were applied to the emission sources. That is, we first applied condensation and then acid scrubbing method using H2SO4 solution for amine treatment. However, we only used an acid scrubbing method using H2O and NaOH solution for acid gas treatment. In order to reduce air emissions of solvents such as dimethylformamide and toluene, we applied condensation and activated carbon adsorption. In order to reduce air emissions of mixture gases containing acid gases and slovents, which could not be separated in the processes, we employed a combination of various air pollution control devices. That is, the mixture gases were passed into the first condenser, the acid scrubber, the second condenser, and the activated carbon adsorption tower in sequence. In addition, for improvement of condensation efficiency of VOCs, we changed the type of the condensers attached in the reactors as a control device modification. Finally, we could successfully reduce air emissions of pollutants produced from various chenmical processes or facilities by use of proper control methods according to the types and specific emission situations of pollutants.

  • PDF

Analysis of Tropospheric Carbon Monoxide over East Asia

  • Lee, S.H.;Choi, G.H.;Lim, H.S.;Lee, J.H.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.615-617
    • /
    • 2003
  • Carbon monoxide (CO) is one of the important trace gases because its concentration in the troposphere directly influences the concentrations of tropospheric hydroxyl (OH), which controls the lifetimes of tropospheric trace gases. CO traces the transport of global and regional pollutants from industrial activities and large scale biomass burning. The distributions of CO were analyzed using the MOPITT data for East Asia, which were compared with the ozone distributions. In general, seasonal CO variations are characterized by a peak in the spring, which decrease in the summer. The monthly average for CO shows a similar profile to that for O$_3$. This fact clearly indicates that the high concentration of CO in the spring is possibly due to one of two causes: the photochemical production of CO in the troposphere, or the transport of the CO into East Asia. The seasonal cycles for CO and O$_3$ in East Asia are extensively influenced by the seasonal exchanges of different air mass types due to the Asian monsoon. The continental air masses contain high concentrations of O$_3$ and CO, due to the higher continental background concentrations, and sometimes to the contribution from regional pollution. In summer this transport pattern is reversed, where the Pacific marine air masses that prevail over Korea bring low concentrations of CO and O$_3$, which tend to give the apparent summer minimums.

  • PDF

도로변 측정을 이용한 2행정 스쿠터의 대기오염물질 배출특성 연구 (Emission Characteristics of a Passing Two-stroke Scooter using at a Roadside Measurement)

  • 우대광;이승복;배귀남;임철수;김태성
    • 한국대기환경학회지
    • /
    • 제27권6호
    • /
    • pp.663-671
    • /
    • 2011
  • Although a scooter is a convenient transportation means for a short distance traveling with a light package in the congested urban center, it might be one of the significant sources of air pollutants to which many people can easily be exposed during its passing-by. In this paper, we measured concentrations of gases and particles emitted from a scooter at roadside with no other traffic. To understand the characteristics of scooter emissions with respect to driving speed (idling, 30 km/h) at the roadside, total particle number concentration, particle size distribution, average surface area of particles deposited in the alveolar region, and concentrations of black carbon, CO, and $NO_x$ were measured. The concentrations of the particle number, surface area of deposited particles, CO, and $NO_x$ were highly fluctuated in the scooter's idling condition. The trends of particle number concentration, CO, and $NO_x$ generation were similar to one another. When the scooter started to move, all of $NO_x$, CO and particle number concentrations increased and after it passed by at the speed of 30 km/h, the concentration peaks of the particles and gases appeared at the same time. Unimodal size distribution with ~70 and ~93 nm mode diameters was observed for the idling and cruising condition, respectively. From this work, we found that emission from a passing vehicle could be characterized using a roadside monitoring technique.

삶은 달걀의 부패에 따른 부위별 냄새물질의 발생특성 연구 (Emission Characteristics of Odorous Gases with the Decay of Albumin and Yolk of Boiled Egg)

  • 김보원;김기현;김용현;안정현
    • 한국대기환경학회지
    • /
    • 제30권2호
    • /
    • pp.95-109
    • /
    • 2014
  • In this study, the concentration of odorants released from albumin (EA) and yolk (EY) portions of boiled egg samples were determined as a function of storage time. The concentrations were measured at storage days of 0, 1, 3, 6, and 9 under room temperature. As such, odorants produced during both fresh and decay conditions were measured through time. A total of 19 compounds were selected as the main target odorants along with 12 reference compounds. GC-MS (for VOC) and GC-PFPD system (for sulfur gases) equipped with thermal desorption (TD) system were employed for odorant analysis in this work. The initial concentrations measured from the chamber system were converted into flux terms ($ng{\cdot}g^{-1}{\cdot}min^{-1}$). The EA showed the highest concentration of $H_2S$ (234 $ng{\cdot}g^{-1}{\cdot}min^{-1}$) at EA-0, and the concentrations of AT (Acetone) was also seen clearly in the range of 11.7 (EA-0) to 58.6 $ng{\cdot}g^{-1}{\cdot}min^{-1}$ (EA-9). The EY showed similar patterns. EtAl (Ethyl alcohol) increased 9.47 (EA-1) to 96.7 $ng{\cdot}g^{-1}{\cdot}min^{-1}$ (EA-9) in EA samples. Ketone, alcohol, sulfur groups generally exhibited high concentrations compared to other odorants. These data were also compared in relation to olfactometry related dilution-to-threshold (D/T) ratio by air dilution sensory (ADS) test and sum of odor intensity (SOI).

기후변화 영향과 향후 적응대책방향에 대한 소고 (Review on Impacts and Possible Adaptation Strategies for Climate Change)

  • 최광호
    • 환경영향평가
    • /
    • 제17권3호
    • /
    • pp.201-211
    • /
    • 2008
  • According to IPCC fourth assessment report in 2007, global mean temperatures have risen by 0.74 degrees Celsius over the past 100 years. Moreover, in the recent 25 years, global mean temperatures have risen by 0.45 degrees Celsius, which is 2.4-times larger than those in the past 100 years. The evidences for climate change, such as sea level rise, arctic glacier melt, and desertification in Asia, have occurred and increased over the globe. In Korea, because regional climate has been changed, types of agriculture and fishery should be replaced. And as precipitation pattern behave differently from the past decades, water management would be more difficult, furthermore, atmospheric environment, related to concentrations for ozone, sulfate, etc., could be worse. Nevertheless, we have only focused on greenhouse gas reduction duty for the Convention of Climate Change. Fortunately, in the fourth plan on climate change, we have planned to manage climate change more actively since 2007. In Korea, the emission of carbon dioxide has increased about 1.9-times more, from 311million ton in 1990 to 591million ton in 2004. And also about 2 ppm rise every year for concentrations of carbon dioxide in the atmosphere. As a result, ecosystem, quality of water and atmosphere would be affected. Here, the emission of greenhouse gases over the globe is examined, and the effect of greenhouse gases for climate change is reviewed from the results of previous studies. In addition, the countermeasures of mitigation and adaptation on climate change were discussed for the understanding.

난지도매립장 배출공으로부터 관측한 메탄 및 이산화반소의 농도분포 (The Distribution Characteristics of CH4 and CO2 from the Infiltrated Ventpipes of the Nan-Ji-Do Landfill Site)

  • 김민영;조석주;이민환;김기현
    • 한국지구과학회지
    • /
    • 제23권3호
    • /
    • pp.270-279
    • /
    • 2002
  • 주요 온실기체인 이산화탄소와 메탄의 농도를 난지도 매립장에 위치한 42개의 배출공으로부터 측정하였다. 그 결과에 의하면, 배출공의 출구에서 관측된 메탄은 부피기준으로 절반 그리고 이산화탄소는 28%에 가까운 수준으로 높은 농도를 유지하였다. 그러나 이들의 환경거동은 배출공의 위치 등과 같은 차이 외에도 가스성분에 따라 여러 가지차이를 보여 주었다. 본 연구의 결과는 이들 성분의 분포가 수은과 같은 미량성분의 분포특성과는 달리 대체로 균질한편이라는 것을 확인해 주었다.

대기복사전달모델을 이용한 제주지역 도심 및 배경지점에서의 온실가스에 따른 복사강제력 영향 연구 (Influence of Greenhouse Gases on Radiative Forcing at Urban Center and Background Sites on Jeju Island Using the Atmospheric Radiative Transfer Model)

  • 이수정;송상근;한승범
    • 대기
    • /
    • 제27권4호
    • /
    • pp.423-433
    • /
    • 2017
  • The spatial and temporal variations in radiative forcing (RF) and mean temperature changes of greenhouse gases (GHGs), such as $CO_2$, $CH_4$, and $N_2O$, were analyzed at urban center (Yeon-dong) and background sites (Gosan) on Jeju Island during 2010~2015, based on a modeling approach (i.e., radiative transfer model). Overall, the RFs and mean temperature changes of $CO_2$ at Yeon-dong during most years (except for 2014) were estimated to be higher than those at Gosan. This might be possibly because of its higher concentrations at Yeon-dong due to relatively large energy consumption and small photosynthesis and also the difference in radiation flux due to the different input condition (e.g., local time and geographic coordinates of solar zenith angle) in the model. The annual mean RFs and temperature changes of $CO_2$ were highest in 2015 ($2.41Wm^{-2}$ and 1.76 K) at Yeon-dong and in 2013 ($2.22Wm^{-2}$ and 1.62 K) at Gosan (except for 2010 and 2011). The maximum monthly/seasonal mean RFs and temperature changes of $CO_2$ occurred in spring (Mar. and/or Apr.) or winter (Jan. and/or Feb.) at the two sites during the study period, whereas the minimum RFs and temperature changes in summer (Jun.-Aug.). In the case of $CH_4$ and $N_2O$, their impacts on the RF and mean temperature changes were very small (an order of magnitude lower) compared to $CO_2$. The spatio-temporal differences in these RF values of GHGs might primarily depend on the atmospheric profile (e.g., ozone profile), surface albedo, local time (or solar zenith angle), as well as their mass concentrations.