• 제목/요약/키워드: Gaseous

검색결과 1,367건 처리시간 0.03초

선량환산인자를 이용한 기체유출물 RMS 경보설정 개선방안 (Alarm Setpoint Determination Method of Gaseous Effluent Radiation Monitoring Systems Using Dose Factors Based on ICRP-60 Recommendations)

  • 박규준;김희근;하각현;엄희문
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2003년도 가을 학술논문집
    • /
    • pp.491-496
    • /
    • 2003
  • ICRP-60의 방사선방호 신개념이 국내 법령에 도입됨에 따라 원전 방사성유출물 관리의 변경이 불가피한 실정이다. 방사성유출물 관리의 중요한 요소 중의 하나가 원전 방사선감시계통(Radiation Monitoring System)의 적절한 운용이다. RMS는 원자력법에 명시되어 있는 일반인의 선량한도와 배출관리기준을 만족하도록 운용되어야 한다. 방사성유출물을 제한하는 기준에 따른 RMS 경보설정치의 비교ㆍ분석을 통해 국내 원전에 적용 가능한 최적의 개선방안을 제시할 수 있다. 본 논문에선 선량한도 기준 중 가능한 모든 피폭경로를 고려하여 예상선량률을 계산한 선행 RMS 경보설정 개선방안과의 비교를 위해 주요 피폭경로만 고려하는 선량환산인자에 의한 예상선량률 계산과 RMS 경보설정 개선방안을 조사하였다.

  • PDF

고온 가스 질화와 저온 가스 질화 방법에 따른 AISI 410 마르텐사이트 스테인레스강의 경화층 및 마모 특성 (Surface Hardening and Wear Properties of AISI 410 Martensitic Stainless Steel by High & Low Temperature Gaseous Nitriding)

  • 손석원;이원범
    • 한국표면공학회지
    • /
    • 제51권4호
    • /
    • pp.249-255
    • /
    • 2018
  • High temperature and low temperature gaseous nitriding was performed in order to study of the surface hardening and wear properties of the nitrided AISI 410 Martensitic stainless steels. High temperature gaseous nitiridng (HTGN) was carried out using partial pressure $N_2$ gas at $1,100^{\circ}C$ for 10 hour, and Low temperature gaseous nitiridng (LTGN) was conducted in a gas mixture of NH3 and N2 at $470^{\circ}C$ for 10 hour. The nitrided samples were characterized by microhardness measurements, optical microscopy and scanning electron microscopy. The phases were identified by X-ray diffraction and nitrogen concentration was analyzed by GD-OES. The HTGN specimen had a surface hardness of about $700HV_{0.1}$, $350{\mu}m$ of case depth. A ${\sim}50{\mu}m$ thick, $1,250HV_{0.1}$ hard nitrided case formed at the surface of the AISI 410 steel by LTGN, composed nitrogen supersaturated expanded martensite and ${\varepsilon}-Fe_{24}N_{10}$ iron nitrides. Additionally, the results of the wear tests, carried out LTGN specimen was low friction coefficient and high worn mass loss of ball. The increase in wear resistance can be mainly attributed to the increase in hardness and to the lattice distortion caused by higher nitrogen concentration.

냉각 실린더의 수평 거리가 저장 용기 내부의 기체 수소 자연대류 현상에 미치는 영향 (Effect of Horizontal Distance of Cold Cylinders on Natural Convection of Gaseous Hydrogen in a Physical Storage Container)

  • 서영민;노현우;하동우;구태형;고락길
    • 한국수소및신에너지학회논문집
    • /
    • 제34권3호
    • /
    • pp.274-282
    • /
    • 2023
  • This study conducted direct numerical simulations of the natural convection phenomena of gaseous hydrogen in a physical storage container containing four circular cylinders. Rayleigh numbers (Ra) in the range of 104≤Ra≤106 and a Prandtl number (Pr)=0.69 (gaseous hydrogen) were considered. The main parameter is a horizontal distance of four circular cylinders and the values of εh=0.1, 0.2, 0.3, 0.4, and 0.5 are considered. The flow and thermal structures and corresponding heat transfer characteristics are investigated with respect to the transition of the flow regime. The time- and surface-averaged Nusselt number on the cylinder surface and the wall of physical storage container increased by about 57% and 69% according to the Ra and εh, respectively. Thus, the horizontal distance has an influence on the heat transfer characteristics on natural convection of gaseous hydrogen.

가스 수소 장입 조건 제어를 통한 SA-723 강의 수소 취화 특성 평가 (Hydrogen Embrittlement Properties of SA-723 steel via controlling Gaseous Hydrogen Pre-charging Condition)

  • 이강진;김정환;이화영;김도훈;홍순직;송기안
    • 열처리공학회지
    • /
    • 제36권6호
    • /
    • pp.382-388
    • /
    • 2023
  • In this study, hydrogen embrittlement (HE) behavior of a SA-723 steel via controlling gaseous hydrogen pre-charging condition has been analyzed. The gaseous hydrogen charging of the SA-723 steel was performed under a constant pressure of 20 MPa of gaseous H2 at 150℃ and 300℃ for 2 and 6h, and TDS, SSRT and Charpy tests were conducted to analyze the hydrogen embrittlement (HE) behavior of the SA-723 steel. Furthermore, prior to commencing the test, these specimens were coated with Zn to prevent hydrogen from diffusing out of a specimen during the tests. The TDS results showed that the 300℃-6h and 150℃-6h charged steels contain larger amounts of hydrogen than 300℃-2h and 150℃-2h charged steel. The SSRT and Charpy test results also showed the similar trends that the mechanical properties of the steels deteriorate as the amount of hydrogen charged in the steel increases. Therefore, this study suggests that, for SA-723 steel, the charging time parameter is more effective to charge more amount of hydrogen into SA-723 steel, rather than the charging temperature.

예혼합 화염이 벽면에 충돌시 열전달 및 연소특성에 관한 실험적 연구 (The Experimental Study for Heat Transfer and Combustion Characteristics of Gaseous Impinging Jet Premixed Flame)

  • 정은규;조경민;김호영
    • 한국자동차공학회논문집
    • /
    • 제4권6호
    • /
    • pp.1-10
    • /
    • 1996
  • In the present study, the structure and the characteristics of gaseous premixed flame impinging normal to the flat plate have been investigated experimentally. For the examination of the heat transfer and combustion characteristics, measurements of temperature, direct and schlieren photography were performed. The results of present study show that the length of inner flame becomes smaller as distance from nozzle exit to plate decrease. The width of flame becomes larger as air-fuel ratio decreases. The smaller Reynolds number at nozzle exit and the smaller distance from nozzle exit to plate lead to the higher heat transfer rate in the region of center of plate. As the air-fuel ratio decreases, the heat transfer at plate with moderate rate occurs on wide region.

  • PDF

고압 분위기하에 분사된 메탄가스 제트의 자연발화 및 화염전파 특성 해석 (Numerical Analysis for Autoignition Characteristics of Turbulent Gaseous Jets in a High Pressure Environment)

  • Kim, Seong-Ku;Yu, Yong-Wook;Kim, Yong-Mo
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제24회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.24-32
    • /
    • 2002
  • The autoignition and subsequent flame propagation of initially nonpremixed turbulent system have been numerically analyzed. The unsteady flamelet modeling based on the RIF (Representative Interactive Flamelet) concept has been employed to account for the influences of turbulence on these essentially transient combustion processes. In this RIF approach, the partially premixed burning, diffusive combustion and formation of pollutants(NOx, soot) can be consistently modeled by utilizing the comprehensive chemical mechanism. To treat the spatially distributed inhomogeneity of scalar dissipation rate, the multiple RIFs are employed in the framework of EPFM(Eulerian Particle Flamelet Model) approach. Computations are made for the various initial conditions of pressure, temperature, and fuel composition. The present turbulent combustion model reasonably well predicts the essential features of autoignition process in the transient gaseous fuel jets injected into high pressure and temperature environment.

  • PDF

고압 분위기하에 분사된 메탄가스 제트의 자연점화 및 화염전파 특성 해석 (Numerical analysis for Autoignition Characteristics of Turbulent Gaseous Jets in a High Pressure Environment)

  • 김성구;유용욱;김용모
    • 한국자동차공학회논문집
    • /
    • 제10권5호
    • /
    • pp.81-89
    • /
    • 2002
  • The autoignition and subsequent flame propagation of initially nonpremixed turbulent system have been numerically analyzed. The unsteady flamelet modeling based on the RIF (representative interactive flamelet) concept has been employed to account for the influences of turbulence on these essentially transient combustion processes. In this RIF approach, the partially premixed burning, diffusive combustion and formation of pollutants(NOx, soot) can be consistently modeled by utilizing the comprehensive chemical mechanism. To treat the spatially distributed inhomogeneity of scalar dissipation rate, the multiple RIFs are employed in the framework of EPFM(Eulerian particle flamelet model) approach. Computations are made for the various initial conditions of pressure, temperature, and fuel composition. The present turbulent combustion model reasonably well predicts the essential features of autoignition process in the transient gaseous fuel jets injected into high pressure and temperature environment.

초임계 환경으로 분사되는 극저온 제트의 분열 (Disintegration of Cryogenic Jet in Super-critical Environment)

  • 이건웅;김도헌;구자예
    • 한국분무공학회지
    • /
    • 제18권3호
    • /
    • pp.140-145
    • /
    • 2013
  • Sub/supercritical spray experiments were conducted, and cryogenic nitrogen and gaseous argon were selected for simulants. liquid nitrogen and gaseous argon were injected in subcritical case, and supercritical nitrogen and near-critical gaseous argon were injected in near-critical/supercritical cases. shadowgraph method was used to visualize spray, and analyzed about the breakup length. The breakup length was measured from numbers of Instantaneous shadowgraph Images from each case, and they were compared with momentum flux ratios and density ratios. It was observed that the relation between breakup length and momentum flux ratio was fitted into former experiment results. and the reasonable constant was suggested about the relation between breakup length and density ratio.

Advances in the understanding of molybdenum effect on iodine and caesium reactivity in condensed phase in the primary circuit in nuclear severe accident conditions

  • Gouello, Melany;Hokkinen, Jouni;Karkela, Teemu
    • Nuclear Engineering and Technology
    • /
    • 제52권8호
    • /
    • pp.1638-1649
    • /
    • 2020
  • In the case of a severe accident in a Light Water Reactor, the issue of late release of fission products, from the primary circuit surfaces is of particular concern due to the direct impact on the source term. CsI is the main iodine compound present in the primary circuit and can be deposited as particles or condensed species. Its chemistry can be affected by the presence of molybdenum, and can lead to the formation of gaseous iodine. The present work studied chemical reactions on the surfaces involving gaseous iodine release. CsI and MoO3 were used to highlight the effects of carrier gas composition and oxygen partial pressure on the reactions. The results revealed a noticeable effect of the presence of molybdenum on the formation of gaseous iodine, mainly identified as molecular iodine. In addition, the oxygen partial pressure prevailing in the studied conditions was an influential parameter in the reaction.

PAHs 오염 토양내 오존이동특성;함수율과 수분과 토양 유기물의 영향

  • 배기진;정해룡;최희철
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2001년도 총회 및 춘계학술발표회
    • /
    • pp.140-143
    • /
    • 2001
  • The packed column experiments were conducted with commercial Jumunjin sand(SOM content : 0.01 %) and a field soil(SOM content : 0.08 %) in order to understand the effects of water content and soil organic matter(SOM) on the transport of gaseous ozone in unsaturated soil contaminated with phenanthrene. Water content and SOM content were artificially controlled. As water content increased, earlier breakthrough was observed in the beginning of BTC of ozone, because direct contact of gaseous ozone with SOM and phenanthrene was prevented by water film formed between soil particles and gaseous ozone. The total removal of phenanthrene in Jumunjin sand was not affected by water content which was more than 99% at different water content(4.4, 8, 17.3%). However, the removal in field soil at water content 6.5 % and 20 % was 98% and 80 %.

  • PDF