Browse > Article
http://dx.doi.org/10.1016/j.net.2020.01.029

Advances in the understanding of molybdenum effect on iodine and caesium reactivity in condensed phase in the primary circuit in nuclear severe accident conditions  

Gouello, Melany (VTT Technical Research Centre of Finland Ltd)
Hokkinen, Jouni (VTT Technical Research Centre of Finland Ltd)
Karkela, Teemu (VTT Technical Research Centre of Finland Ltd)
Publication Information
Nuclear Engineering and Technology / v.52, no.8, 2020 , pp. 1638-1649 More about this Journal
Abstract
In the case of a severe accident in a Light Water Reactor, the issue of late release of fission products, from the primary circuit surfaces is of particular concern due to the direct impact on the source term. CsI is the main iodine compound present in the primary circuit and can be deposited as particles or condensed species. Its chemistry can be affected by the presence of molybdenum, and can lead to the formation of gaseous iodine. The present work studied chemical reactions on the surfaces involving gaseous iodine release. CsI and MoO3 were used to highlight the effects of carrier gas composition and oxygen partial pressure on the reactions. The results revealed a noticeable effect of the presence of molybdenum on the formation of gaseous iodine, mainly identified as molecular iodine. In addition, the oxygen partial pressure prevailing in the studied conditions was an influential parameter in the reaction.
Keywords
Iodine transport; Molybdenum; Oxygen partial pressure; Primary circuit;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T.-M.-D. Do, S. Sujatanond, T. Ogawa, Behavior of cesium molybdate, Cs2MoO4, in severe accident conditions. (1) partitioning of Cs and Mo among gaseous species, J. Nucl. Sci. Technol. 55 (2018) 348-355, https://doi.org/10.1080/00223131.2017.1397560.   DOI
2 J.-P. Van Dorsselaere, A. Auvinen, D. Beraha, P. Chatelard, L.E. Herranz, C. Journeau, W. Klein-Hessling, I. Kljenak, A. Miassoedov, S. Paci, R. Zeyen, Recent severe accident Research synthesis of the major outcomes from the SARNET network, Nucl. Eng. Des. 291 (2015) 19-34, https://doi.org/10.1016/j.anucene.2016.02.014.   DOI
3 G. Ducros, Y. Pontillon, P.P. Malgouyres, Synthesis of the VERCORS experimental programme: separate-effect experiments on fission product release, in support of the phebus-FP programme, Ann. Nucl. Energy 61 (2013) 75-87, https://doi.org/10.1016/j.anucene.2013.02.033.   DOI
4 A.-C. Gregoire, T. Haste, Material release from the bundle in Phebus FP, Ann. Nucl. Energy 61 (2013) 63-74, https://doi.org/10.1016/j.anucene.2013.02.037.   DOI
5 A.-C. Gregoire, J. Kalilainen, F. Cousin, H. Mutelle, L. Cantrel, A. Auvinen, T. Haste, S. Sobanska, Studies on the role of molybdenum on iodine transport in the RCS in nuclear severe accident conditions, Ann. Nucl. Energy 78 (2015) 117-129, https://doi.org/10.1016/j.anucene.2014.11.026.   DOI
6 M. Gouello, H. Mutelle, F. Cousin, S. Sobanska, E. Blanquet, Analysis of the iodine gas phase produced by interaction of CsI and MoO3 vapours in flowing steam, Nucl. Eng. Des. 263 (2013) 462-472, https://doi.org/10.1016/j.nucengdes.2013.06.016.   DOI
7 C.W. Bale, E. Belisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melançon, A.D. Pelton, C. Robelin, S. Petersen, FactSage thermochemical software and databases d recent developments, Calphad 33 (2009) 295-311, https://doi.org/10.1016/j.calphad.2008.09.009.   DOI
8 H.A. Benesi, J.H. Hildebrand, A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons, J. Am. Chem. Soc. 71 (1949) 2703-2707. http://pubs.acs.org/doi/pdf/10.1021/ja01176a030.   DOI
9 D.J. Gardiner, C.J. Littleton, K.M. Thomas, K.N. Strafford, Distribution and characterization of high temperature air corrosion products on ironchromium alloys by Raman microscopy, Oxid. Metals 27 (1987) 57-72.   DOI
10 L. Seguin, M. Figlarz, R. Cavagnat, J.-C. Lassegues, Infrared and Raman spectra of MoO3 molybdenum trioxides and MoO3 ${\cdot}$ xH2O molybdenum trioxide hydrates, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 51 (1995) 1323-1344, https://doi.org/10.1016/0584-8539(94)00247-9.   DOI
11 G.C. Allen, J.W. Tyler, Chemical state and distribution of iodine deposits on 17% Cr/12% Ni steel oxidised in CO2/CH3I gas mixtures, J. Nucl. Mater. 170 (1990) 276-285, https://doi.org/10.1016/0022-3115(90)90299-3.   DOI
12 W.M. Haynes, CRC Handbook of Chemistry and Physics : a Ready-Reference Book of Chemical and Physical Data, 92nd ed., 2011.
13 J. Kalilainen, T. Karkela, R. Zilliacus, U. Tapper, A. Auvinen, J. Jokiniemi, Chemical reactions of fission product deposits and iodine transport in primary circuit conditions, Nucl. Eng. Des. 267 (2014) 140-147, https://doi.org/10.1016/j.nucengdes.2013.11.078.   DOI
14 J. McFarlane, J.C. Wren, R.J. Lemire, Chemical speciation of iodine source term to containment, Nucl. Technol. 138 (2002) 162-178. http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=20826755.   DOI
15 N. Girault, C. Fiche, A. Bujan, J. Dienstbier, Towards a better understanding of iodine chemistry in RCS of nuclear reactors, Nucl. Eng. Des. 239 (2009) 1162-1170, https://doi.org/10.1016/j.nucengdes.2009.02.008.   DOI
16 K. Mueller, S. Dickinson, C. de Pascale, N. Girault, L. Herranz, F. De Rosa, G. Henneges, J. Langhans, C. Housiadas, V. Wichers, A. Dehbi, S. Paci, F. Martin-Fuertes, I. Turcu, I. Ivanov, B. Toth, G. Horvath, Validation of severe accident codes on the phebus fission product tests in the framework of the PHEBEN-2 project, Nucl. Technol. 163 (2008) 209-227, https://doi.org/10.13182/NT08-A3982.   DOI
17 J. Sugimoto, M. Kajimoto, K. Hashimoto, K. Soda, Short Overview on the Definitions and Significance of the Late Phase Fission Product Aerosol/Vapour Source, 1994. Tokai-Mura.
18 G. Katata, M. Chino, T. Kobayashi, H. Terada, M. Ota, H. Nagai, M. Kajino, R. Draxler, M.C. Hort, A. Malo, T. Torii, Y. Sanada, Detailed source term estimation of the atmospheric release for the Fukushima Daiichi nuclear power station accident by coupling simulations of an atmospheric dispersion model with an improved deposition scheme and oceanic dispersion model, Atmos. Chem. Phys. 15 (2015) 1029-1070, https://doi.org/10.5194/acp-15-1029-2015.   DOI
19 E.H.P. Cordfunke, R.J.M. Konings, Chemical interactions in water-cooled nuclear fuel: a thermochemical approach, J. Nucl. Mater. 152 (1988) 301-309, https://doi.org/10.1016/0022-3115(88)90341-8.   DOI
20 H.A. Hoekstra, The Cs2MoO4 - MoO3 system, Inorg. Nucl. Chem. Lett. 9 (1973) 1291-1301.   DOI
21 W. Klein-Hessling, M. Sonnenkalb, D. Jacquemain, B. Clement, E. Raimond, H. Dimmelmeier, G. Azarian, G. Ducros, C. Journeau, L.E. Herranz Puebla, A. Schumm, A. Miassoedov, I. Kljenak, G. Pascal, S. Bechta, S. Guntay, M.K. Koch, I. Ivanov, A. Auvinen, I. Lindholm, Conclusions on severe accident Research priorities, Ann. Nucl. Energy (2014), https://doi.org/10.1016/j.anucene.2014.07.015.
22 S. Sunder, The relationship between molybdenum oxidation state and iodine volatility in nuclear fuel, Nucl. Technol. 144 (2003) 259-273. http://cat.inist.fr/?aModele=afficheN&cpsidt=15205641.   DOI
23 F.G. Di Lemma, J.Y. Colle, O. Benes, R.J.M. Konings, A separate effect study of the influence of metallic fission products on CsI radioactive release from nuclear fuel, J. Nucl. Mater. 465 (2015) 499-508, https://doi.org/10.1016/j.jnucmat.2015.05.037.   DOI
24 M. Lenz, R. Gruehn, Developments in measuring and calculating chemical vapor transport phenomena demonstrated on Cr, Mo, W, and their compounds, Chem. Rev. 97 (1997) 2967-2994.   DOI
25 L.A. Klinkova, E.D. Skrebkova, Heterogeneous equilibrium in system MoO2-I2, Inorg. Mater. 13 (1977) 380-383.
26 M. Gouello, J. Hokkinen, T. Karkela, A. Auvinen, A complementary study to the chemical behaviour of caesium iodide in presence of boron in condensed phase ($650^{\circ}C$ and $400^{\circ}C$) under primary circuit Conditions : differential thermal analysis and thermogravimetric studies, Nucl. Technol. 203 (2018) 85-91, https://doi.org/10.1080/00295450.2018.1430463.   DOI
27 D. Cubicciotti, B.R. Sehgal, Vapor transport of fission products in postulated severe light water reactor accidents, Nucl. Technol. 65 (1984) 266-291, https://doi.org/10.13182/NT84-A33411.   DOI
28 M. Gouello, J. Hokkinen, T. Karkela, A. Auvinen, A scoping study of chemical behaviour of caesium iodide in presence of boron in condensed phase ($650^{\circ}C$ and $400^{\circ}C$) under primary circuit conditions, Nucl. Technol. 203 (2018) 66-84, https://doi.org/10.1080/00295450.2018.1429111.   DOI
29 J. Kalilainen, Chemical Reactions on Primary Circuit Surfaces and Their Effects on Fission Product Transport in a Severe Nuclear Accident, Aalto University, 2010.
30 G. Ducros, Y. Pontillon, P.-P. Malgouyres, P. Taylor, Y. Dutheillet, Ruthenium release at high temperature from irradiated PWR fuels in various oxidising conditions; main findings from the VERCORS program, in: Nucl. Energy New Eur. 2005, Nuclear Society of Slovenia, Bled (Slovenia), Slovenia, 2005, pp. 34.1-34.14.
31 T. Haste, F. Payot, P.D.W. Bottomley, Transport and deposition in the Phebus FP circuit, Ann. Nucl. Energy 61 (2013) 102-121. http://www.sciencedirect.com/science/article/pii/S0306454912004355.   DOI
32 M. Gouello, J. Kalilainen, T. Karkela, A. Auvinen, Contribution to the understanding of iodine transport under primary circuit conditions: CsI/Cd and CsI/Ag interactions in condensed phase, Nucl. Mater. Energy. 17 (2018) 259-268, https://doi.org/10.1016/J.NME.2018.11.011.   DOI