• Title/Summary/Keyword: Gas-gun

Search Result 453, Processing Time 0.037 seconds

Effects of Dietary Pro-biotics and Immunomodulator as an Alternative to Antibiotics in Korean Native Chicken (토종 육계에 있어서 복합 생균제 및 면역증강제의 항생제 대체효과)

  • Lee, Sang-Bum;Kim, Byung-Kuk;Park, Chang-Ho;Park, Gun-Hyun;Jin, Yong-Cheng;Kang, Han-Suk;Kim, Young-Chul;Kim, Youn-Chil;Bai, Sung-Chul C.;Kim, Seon-Ku;Choi, Yun-Jaie;Lee, Hong-Gu
    • Journal of Animal Science and Technology
    • /
    • v.53 no.5
    • /
    • pp.409-418
    • /
    • 2011
  • This study was conducted to investigate the effects of dietary probiotics and immunomodulator on growth performance, carcass characteristics, fecal $NH_3$ content and pathogenic bacteria counts in ileum and cecum and ileum of broiler chicken (Korean native chicken, HanHyup No. 3). A total of 120 (day-old) chicks were randomly divided into 5 treatments with 3 replicates and there were 8 birds per replicate. Dietary treatments consisted of five diets; the corn-soybean based control diet (C), the diet containing antibiotics (Avilamycin) 10 ppm (T1), the diet containing probiotics 1 [(Lactobacillus ($4.45{\times}10^6$) + yeast ($1.51{\times}10^6$) + Bacillus subtilis ($3.50{\times}10^5$)] at 0.5% level (T2), probiotics 2 [(Lactobacillus ($6.70{\times}10^7$) + yeast ($3.10{\times}10^6$)] at 0.5% level in diet (T3), and the diet containing probiotics 3 [T2 + ${\beta}$-glucan + organic acid] (T4) and raised for 9 weeks. There were no significant differences among treatments in weight gain, feed intake and feed conversion. Carcass ratios of broilers were higher in T3 and T4 than other treatments, however, the differences were non-significant. Internal organs and liver, heart weight were significantly increased in T4 (p<0.05) compared to other treatments. The fecal $NH_3$ gas content was decreased (p<0.05) in antibiotics fed group than others. However, probiotic fed groups were not different when compared with control. The number of Salmonella and E. coli in cecum were reduced in the group supplemented with probiotics and immunomodulator compared to the antibiotics (p<0.05). In this experiment, we showed that diets containing pro-biotics and immunomodulator were capable of an alternative to antibiotics.

Identification and Quantification of Phytosterols in Maize Kernel and Cob (옥수수 종실 및 속대의 Phytosterol 동정과 함량 변이)

  • Kim, Sun-Lim;Kim, Mi-Jung;Jung, Gun-Ho;Lee, Yu-Young;Son, Beom-Young;Kim, Jung-Tae;Lee, Jin-Seok;Bae, Hwan-Hee;Go, Young-Sam;Kim, Sang-Gon;Baek, Seong-Bum
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.2
    • /
    • pp.131-139
    • /
    • 2018
  • Unsaponifiables in the kernel and the cob of 7 maize varieties were analyzed by using thin-layer chromatography (TLC) and gas chromatography (GC) for the identification of phytosterols and their concentrations. The unsaponifiables of the kernel were clearly separated into band I (campesterol, stigmasterol, and ${\beta}$-sitosterol), band II (${\Delta}^5$-avenasterol), band III (${\Delta}^7$- stigmastenol), and band IV (${\Delta}^7$-avenasterol). In the cob, on the other hand, three or more bands were separated in addition to bands. The GC analysis of unsaponifiables showed good separation of campesterol, stigmasterol and ${\beta}$-sitosterol, but the mixture of ${\Delta}^7$-avenasterol (retention time[RT] 22.846), ${\Delta}^7$-stigmastenol (RT 22.852), and ${\Delta}^5$-avenasterol (RT 22.862) showed poor separation. Phytosterol content of the maize kernel was 635.9 mg/100 g, and that of the cob was 273.0 mg/100 g, respectively. The phytosterol content of the kernel was 2.4-fold higher than that of the cob. The phytosterol content of the kernel was higher in the order ${\beta}$sitosterol 80.05% > campesterol 10.5% > stigmasterol 9.46%, but that of the cob was higher in the order ${\beta}$-sitosterol 59.43% > stigmasterol 31.72% > campesterol 10.98%. Based on these results, it appears that the phytosterols of the maize kernel are synthesized in the maize cob and are transferred to the kernel, because the precursors (${\Delta}^7$-avenasterol, ${\Delta}^7$-stigmastenol, and ${\Delta}^5$-avenasterol) of major phytosterols were detected in maize cobs.

Effect of Nitrogen Application Level and Regrowth Period on Composition of Fatty Acid in Tall fescue and Bermudagrass (질소시비 수준 및 재생기간이 톨페스큐와 버뮤다그라스의 지방산조성에 미치는 영향)

  • Park, Hyung-Soo;Hwang, Kyung-Jun;Park, Nam-Gun;Kim, Young-Jun;Jeong, Ha-Yeon;Jo, Nam-Chul;Ko, Moon-Suck
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.29 no.1
    • /
    • pp.43-50
    • /
    • 2009
  • Two experiments were conducted to evaluate the effects of nitrogen (N) application level and regrowth period on the fatty acid (FA) concentration and forage production of tall fescue (Festuca arundinacea Schr.) and bermudagrass (Cynodon dactylon (L.) Pers.). N was applied at 0, 50 and 100 kg/ha, and swards were cut after regrowth periods (15d, 30d and 45d). Concentrations of Individual FA were determined by gas chromatography. FA composition of tall fescue contains a high proportion ($87{\sim}88%$) of total FA contents as palmitic (C16:0), linoleic (C18:2) and linolenic acid (C18:3). The FA composition was not affected by N application, but a longer regrowth period significantly (p<0.05) decreased the composition of linolenic acid (C18:3) and increased those of linoleic acid (C18:2). The FA composition of bermudagrass was not affected by N application, but a longer regrowth period significantly (p<0.001) decreased the composition of linoleic (C18:2) and linolenic acid (C18:3). Linoleic and linolenic acfd of tall fescue were higher than those of bermudagrass. Dry matter (DM) yield of bermudagrass was significantly (P<0.05) affected by N application level and regrowth period. DM yield was higher at high N application and was higher at longer regrowth period. The crude protein concentration was higher at high N application and was low at longer regrowth period. Application of nitrogen fertilizer Increases dry matter (DM) yield and crude protein (CP) content of bermudagrass. These studies demonstrate opportunities to affect the FA concentration and composition of FA in forage through management strategies, which could affect milk FA composition.

Quality Evaluation of Minimally Processed Asian Pears (신선편의 식품화된 신고배의 저장 중 이화학적 품질변화)

  • Kim, Gun-Hee;Cho, Sun-Duk;Kim, Dong-Man
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.1523-1528
    • /
    • 1999
  • The consumer's demands for minimally processed fruits and vegetables have been increased rapidly because of its convenient handling, fresh-like quality as well as producing less wastes from the environmental point of view. Asian pears which are one of the main fruits widely produced and consumed in Korea easily lost their characteristics due to browning and softening after cutting. The objective of this study is to investigate the effects of various treatments on delaying deterioration of sliced Asian pears. 'Shingo' pear slices were treated with various solutions $(1%\;NaCl,\;0.2%\;L-cysteine,\;1%\;CaCl_2\;or\;1%\;calcium\;lactate)$ and were packaged with low density polyethylene $(LDPE,\;60\;{\mu}m)$, ceramic $(CE,\;60\;{\mu}m)$ or vacuum $(Ny/PE,\;80\;{\mu}m)$ film at $20^{\circ}C\;and\;0^{\circ}C$. In order to evaluate the quality of packaged sliced pears, quality index was determined in terms of color, firmness, soluble solids, titratable acidity. ascorbic acid, changes of gas composition, microbial test, and sensory quality. The results showed that sliced 'Shingo' pears packaged with CE and vacuum film maintained better quality than with LDPE at $0^{\circ}C\;and\;20^{\circ}C$. To retard browning and softening. 0.2% L-cysteine and 1% NaCl solutions applied for 1 minute were effective to reduce surface browning of sliced pears, and 1% $CaCl_2$ was the most effective to prevent softening.

  • PDF

Predicting N2O Emission from Upland Cultivated with Pepper through Related Soil Parameters (온실가스 배출 파라메타를 이용한 고추밭 토양의 N2O 배출 예측)

  • Kim, Gun-Yeob;Song, Beom-Heon;Hyun, Byung-Keun;Shim, Kyo-Moon;Lee, Jeong-Taek;Lee, Jong-Sik;Kim, Won-Il;Shin, Joung-Du
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.5
    • /
    • pp.253-258
    • /
    • 2006
  • An empirical model of nitrous oxide emission from agricultural soil has been applied. It is based on the relationship between $N_2O$ and three soil parameters, soil mineral N(ammonium plus nitrate) content in the topsoil(0-15cm), soil water-field pore space, and soil temperature, determined in a study on clay loam and sandy loam at the pepper field in 2004. For comparisons between estimated and observed values of $N_2O$ emissions in the pepper field, it was investigated that $N_2O$ amount in the clay loam and sandy loam were overestimated as 12.2% and less estimated as 30%, respectively. However, $N_2O$ emissions were overestimated as 27.1% in the clay loam and 14.7% in the sandy loam from $N_2O$ gas samples collected once a week at the same time analyzing soil parameters. This modelling approach, based as it is well established and widely used soil measurements, has the potential to provide flux estimates from a much wider range of agricultural sites than would be possible by direct measurement of $N_2O$ emissions.

LCA on Lettuce Cropping System by Top-down Method in Protected Cultivation (시설상추 생산체계에 대한 top-down 방식 전과정평가)

  • Ryu, Jong-Hee;Kim, Kye-Hoon;So, Kyu-Ho;Lee, Gil-Zae;Kim, Gun-Yeob;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1185-1194
    • /
    • 2011
  • This study was carried out to estimate carbon emission using LCA (Life Cycle Assessment) and to establish LCI (Life Cycle inventory) DB for lettuce production system in protected cultivation. The results of data collection for establishing LCI DB showed that the amount of fertilizer input for 1 kg lettuce production was the highest. The amounts of organic and chemical fertilizer input for 1 kg lettuce production were 7.85E-01 kg and 4.42E-02 kg, respectively. Both inputs of fertilizer and energy accounted for the largest share. The amount of field emission for $CO_2$, $CH_4$ and $N_2O$ for 1 kg lettuce production was 3.23E-02 kg. The result of LCI analysis focused on GHG (Greenhouse gas) showed that the emission value to produce 1 kg of lettuce was 8.65E-01 kg $CO_2$. The emission values of $CH_4$ and $N_2O$ to produce 1 kg of lettuce were 8.59E-03 kg $CH_4$ and 2.90E-04 kg $N_2O$, respectively. Fertilizer production process contributed most to GHG emission. Whereas, the amount of emitted nitrous oxide was the most during lettuce cropping stage due to nitrogen fertilization. When GHG was calculated in $CO_2$-equivalents, the carbon footprint from GHG was 1.14E-+00 kg $CO_2$-eq. $kg^{-1}$. Here, $CO_2$ accounted for 76% of the total GHG emissions from lettuce production system. Methane and nitrous oxide held 16%, 8% of it, respectively. The results of LCIA (Life Cycle Impact assessment) showed that GWP (Global Warming Potential) and POCP (Photochemical Ozon Creation Potential) were 1.14E+00 kg $CO_2$-eq. $kg^{-1}$ and 9.45E-05 kg $C_2H_4$-eq. $kg^{-1}$, respectively. Fertilizer production is the greatest contributor to the environmental impact, followed by energy production and agricultural material production.

Estimation of Carbon Emission and LCA (Life Cycle Assessment) From Sweetpotato (Ipomoea batatas L.) Production System (고구마의 생산과정에서 발생하는 탄소배출량 산정 및 전과정평가)

  • So, Kyu-Ho;Lee, Gil-Zae;Kim, Gun-Yeob;Jeong, Hyun-Cheol;Ryu, Jong-Hee;Park, Jung-Ah;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.892-897
    • /
    • 2010
  • LCA (Life Cycle assessment) was carried out to estimate on carbon footprint and to establish of LCI (Life Cycle Inventory) database of sweetpotato production system. Based on collecting the data for operating LCI, it was shown that input of organic fertilizer was value of 3.26E-01 kg $kg^{-1}$ and it of mineral fertilizer was 1.02E-01 kg $kg^{-1}$ for sweetpotato production. It was the highest value among input for sweetpotato production. And direct field emission was 2.47E-02 kg $kg^{-1}$ during sweetpotato cropping. The result of LCI analysis focussed on greenhouse gas (GHG) was showed that carbon footprint was 4.05E-01 kg $CO_2$-eq. $kg^{-1}$ sweetpotato. Especially $CO_2$ for 71% of the GHG emission and the value was 2.88E-01 kg $CO_2$-eq. $kg^{-1}$ sweetpotato. Of the GHG emission $CH_4$, and $N_2O$ were estimated to be 18% and 11%, respectively. It might be due to emit from mainly fertilizer production (32%) and sweetpotato cultivation (28%) for sweetpotato production system. $N_2O$ emitted from sweetpotato cultivation for 90% of the GHG emission. With LCIA (Life Cycle Impact Assessment) for sweetpotato production system, it was observed that the process of fertilizer production might be contributed to approximately 90% of GWP (global warming potential). Characterization value of GWP and POCP were 4.05E-01 $CO_2$-eq. $kg^{-1}$ and 5.08E-05 kg $C_2H_4$-eq. $kg^{-1}$, respectively.

Assessment of Green House Gases Emissions using Global Warming Potential in Upland Soil during Pepper Cultivation (고추재배에서 지구온난화잠재력 (Global Warming Potential)을 고려한 토성별 온실가스 발생량 종합평가)

  • Kim, Gun-Yeob;So, Kyu-Ho;Jeong, Hyun-Cheol;Shim, Kyo-Moon;Lee, Seul-Bi;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.886-891
    • /
    • 2010
  • Importance of climate change and its impact on agriculture and environment have increased with a rise of greenhouse gases (GHGs) concentration in Earth's atmosphere, which caus an increase of temperature in Earth. Greenhouse gas emissions such as carbon dioxide ($CO_2$), methane ($CH_4$) and nitrous oxide ($N_2O$) in the Upland field need to be assessed. GHGs fluxes using chamber systems in two upland fields having different soil textures during pepper cultivation (2005) were monitored under different soil textures at the experimental plots of National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA) located in Suwon city, Korea. $CO_2$ emissions were 12.9 tonne $CO_2\;ha^{-1}$ in clay loam soil and 7.6 tonne $CO_2\;ha^{-1}$ in sandy loam soil. $N_2O$ emissions were 35.7 kg $N_2O\;ha^{-1}$ in clay loam soil and 9.2 kg $N_2O\;ha^{-1}$ in sandy loam soil. $CH_4$ emissions were 0.054 kg $CH_4\;ha^{-1}$ in clay loam soil and 0.013 kg $CH_4\;ha^{-1}$ in sandy loam soil. Total emission of GHGs ($CO_2$, $N_2O$, and $CH_4$) during pepper cultivation was converted by Global Warming Potential (GWP). GWP in clay loam soil was higher with 24.0 tonne $CO_2$-eq. $ha^{-1}$ than that in sandy loam soil (10.5 tonne $CO_2$-eq. $ha^{-1}$), which implied more GHGs were emitted in clay loam soil.

Estimation of Carbon Emission and LCA (Life Cycle Assessment) from Pepper (Capsicum annuum L.) Production System (고추의 생산과정에서 발생하는 탄소배출량 산정 및 전과정평가)

  • So, Kyu-Ho;Park, Jung-Ah;Huh, Jin-Ho;Shim, Kyo-Moon;Ryu, Jong-Hee;Kim, Gun-Yeob;Jeong, Hyun-Cheol;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.904-910
    • /
    • 2010
  • LCA (Life Cycle Assessment) carried out to estimate carbon footprint and to establish of LCI (Life Cycle Inventory) database of pepper production system. Pepper production system was categorized the field cropping (redpepper) and the greenhouse cropping (greenpepper) according to pepper cropping type. The results of collecting data for establishing LCI D/B showed that input of fertilizer for redpepper production was more than that for greenpepper production system. The value of fertilizer input was 2.55E+00 kg $kg^{-1}$ redpepper and 7.74E-01 kg $kg^{-1}$ greenpepper. Amount of pesticide input were 5.38E-03 kg $kg^{-1}$ redpepper and 2.98E-04 kg $kg^{-1}$ greenpepper. The value of field direct emission ($CO_2$, $CH_4$, $N_2O$) were 5.84E-01 kg $kg^{-1}$ redpepper and 2.81E+00 greenpepper, respectively. The result of LCI analysis focussed on the greenhouse gas (GHG), it was observed that the values of carbon footprint were 4.13E+00 kg $CO_2$-eq. $kg^{-1}$ for redpepper and 4.70E+00 kg $CO_2$-eq. $kg^{-1}$ for greenpepper; especially for 90% and 6% of $CO_2$ emission from fertilizer and pepper production, respectively. $N_2O$ was emitted from the process of N fertilizer production (76%) and pepper production (23%). The emission value of $CO_2$ from greenhouse production was more higher than it of field production system. The result of LCIA (Life Cycle Impact Assessment) was showed that characterization of values of GWP (Global Warming Potential) were 4.13E+00 kg $CO_2$-eq. $kg^{-1}$ for field production system and 4.70E+00 kg $CO_2$-eq. $kg^{-1}$ for greenhouse production system. It was observed that the process of fertilizer production might be contributed to approximately 52% for redpepper production system and 48% for greenpepper production system of GWP.

Estimation of Carbon Emission and LCA (Life Cycle Assessment) from Soybean (Glycine max L.) Production System (콩의 생산과정에서 발생하는 탄소배출량 산정 및 전과정평가)

  • So, Kyu-Ho;Lee, Gil-Zae;Kim, Gun-Yeob;Jeong, Hyun-Cheol;Ryu, Jong-Hee;Park, Jung-Ah;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.898-903
    • /
    • 2010
  • This study was carried out to estimate carbon emission using LCA (Life Cycle Assessment) and to establish LCI (Life Cycle Inventory) database of soybean production system. Based on collecting the data for operating LCI, it was shown that input of organic fertilizer was value of 3.10E+00 kg $kg^{-1}$ soybean and it of mineral fertilizer was 4.57E-01 kg $kg^{-1}$ soybean for soybean cultivation. It was the highest value among input for soybean production. And direct field emission was 1.48E-01 kg $kg^{-1}$ soybean during soybean cropping. The result of LCI analysis focussed on greenhouse gas (GHG) was showed that carbon footprint was 3.36E+00 kg $CO_2$-eq $kg^{-1}$ soybean. Especially $CO_2$ for 71% of the GHG emission. Also of the GHG emission $CH_4$, and $N_2O$ were estimated to be 18% and 11%, respectively. It might be due to emit from mainly fertilizer production (92%) and soybean cultivation (7%) for soybean production system. $N_2O$ was emitted from soybean cropping for 67% of the GHG emission. In $CO_2$-eq. value, $CO_2$ and $N_2O$ were 2.36E+00 kg $CO_2$-eq. $kg^{-1}$ soybean and 3.50E-01 kg $CO_2$-eq. $kg^{-1}$ soybean, respectively. With LCIA (Life Cycle Impact Assessment) for soybean production system, it was observed that the process of fertilizer production might be contributed to approximately 90% of GWP (global warming potential). Characterization value of GWP was 3.36E+00 kg $CO_2$-eq $kg^{-1}$.