• Title/Summary/Keyword: Gas-Vent

Search Result 97, Processing Time 0.024 seconds

OVERVIEW OF CONTAINMENT FILTERED VENT UNDER SEVERE ACCIDENT CONDITIONS AT WOLSONG NPP UNIT 1

  • Song, Y.M.;Jeong, H.S.;Park, S.Y.;Kim, D.H.;Song, J.H.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.5
    • /
    • pp.597-604
    • /
    • 2013
  • Containment Filtered Vent Systems (CFVSs) have been mainly equipped in nuclear power plants in Europe and Canada for the controlled depressurization of the containment atmosphere under severe accident conditions. This is to keep the containment integrity against overpressure during the course of a severe accident, in which the radioactive gas-steam mixture from the containment is discharged into a system designed to remove the radionuclides. In Korea, a CFVS was first introduced in the Wolsong unit-1 nuclear power plant as a mitigation measure to deal with the threat of over pressurization, following post-Fukushima action items. In this paper, the overall features of a CFVS installation such as risk assessments, an evaluation of the performance requirements, and a determination of the optimal operating strategies are analyzed for the Wolsong unit 1 nuclear power plant using a severe accident analysis computer code, ISAAC.

A Study on the Safety Improvement by CFD Analysis for Packaged Type Hydrogen Refueling System (CFD 툴을 활용한 패키지형 수소충전시스템의 안전성 향상 연구)

  • HWANG, SOON-IL;KANG, SEUNG-KYU;HUH, YUN-SIL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.3
    • /
    • pp.243-250
    • /
    • 2019
  • In this study, to ensure the safety of the packaged hydrogen refueling system, the improvement plan was derived by using 3-dimensional CFD program (FLACS). We also confirmed the effectiveness of risk reduction and the suitability of safety standard. By ventilation performance evaluation according to the position of the vent, it demonstrated that the vent should be installed at the ceiling to safely ventilate without stagnation of the leaked gas. In case of ventilation system according to KGS standard, risk situation could be resolved after about 5 minutes in the worst leaked condition. The result showed that jet fire and explosion inside the packaged system could affect the surrounding facilities. This proves that the standard for installing flame detectors, emergency shut down system and protection wall is appropriate.

Optimization of Vent Logic for Cascade Type Fuel Cell Module (캐스캐이드형 연료전지 모듈 벤트 로직 최적화)

  • Lim, Jongkoo;Park, Jongcheol;Kwon, Kiwook;Shin, Hyun Khil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.87.2-87.2
    • /
    • 2011
  • Many type of fuel cell stacks have been developed to improve the efficiency of reactants usage. The cascade type fuel cell stack using dead end operation is able to attain above 99% usage of hydrogen and oxygen. It is sectionalized to several parts and the residual reactants which are used previous parts would be supplied again to next parts which have less number of cells in dead end operation stack. The oversupply of reactants which is usually 120%~150% of the theoretical amount to generate current for preventing the flooding effect could be provided to each part except the last one. The final section which is called monitoring cells is supposed to be supplied insufficient the fuel or oxidant that would have some accumulated inert gas from former parts. It makes some voltage drop in the part and the fresh reactants must be supplied to the part for recovering it by venting the residual gas. So the usage of fuel and oxidant is depend on the time and frequency of opening valves for venting of residual gas and it is important to optimize the vent logic for achieving higher usage of hydrogen and oxygen. In this research, many experiments are performed to find optimal condition by evaluating the effect of time and frequency under several power conditions using over 100kW class fuel cell module. And the characteristics of the monitoring cells are studied to know the proper cell voltage which decide the condition of opening the vent valve for stable performance of the cascade type fuel cell module.

  • PDF

A Study on the Safety of Carbon Manufacturing By-product Gas Emissions (카본제조 부생가스 배출 안전성에 관한 연구)

  • Joo, Jong-Yul;Jeong Phil-Hoon;Kim, Sang-Gil;Sung-Eun, Lee
    • Journal of the Korea Safety Management & Science
    • /
    • v.26 no.1
    • /
    • pp.99-106
    • /
    • 2024
  • In the event of an emergency such as facility shutdown during process operation, the by-product gas must be urgently discharged to the vent stack to prevent leakage, fire, and explosion. At this time, the explosion drop value of the released by-product gas is calculated using ISO 10156 formula, which is 27.7 vol%. Therefore, it does not correspond to flammable gas because it is less than 13% of the explosion drop value, which is the standard for flammable gas defined by the Occupational Safety and Health Act, and since the explosion drop value is high, it can be seen that the risk of fire explosion is low even if it is discharged urgently with the vent stock. As a result of calculating the range of explosion hazard sites for hydrogen gas discharged to the Bent Stack according to KS C IEC 60079-10-1, 23 meters were calculated. Since hydrogen is lighter than air, electromechanical devices should not be installed within 23 meters of the upper portion of the Bent Stack, and if it is not possible, an explosion-proof electromechanical device suitable for type 1 of dangerous place should be installed. In addition, the height of the stack should be at least 5 meters so that the diffusion of by-product gas is facilitated in case of emergency discharge, and it should be installed so that there are no obstacles around it.

Method to Derive the Optimal Vent Position when Flammable Liquid Leaks Based on CFD (CFD 기반 인화성 액체 누출 시 최적의 환기구 배치 도출 방안)

  • Eun-Hee Kim;Seung-Hyo An;Jun-Seo Lee;Byung-Chol Ma
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.1
    • /
    • pp.11-18
    • /
    • 2024
  • If flammable liquid leaks, vapor evaporated from the pool can cause poisoning or suffocation to workers, leading to secondary accidents such as fires and explosions. To prevent such damage, ventilation facilities shall be installed when designing indoor workplaces. At this time, the behavior varies depending on the characteristics of the leaked chemical, so it is necessary to select a suitable vent location according to the material. Therefore, 3D CFD simulations were introduced to derive optimal vent position and ventilation efficiency was quantitatively evaluated by vent position. At this time, assuming a situation in which flammable liquids leak at indoor workplaces to form pools, the concentration of vapor evaporated from pools was compared to derive the optimal vent position. As a result of research on toluene with high vapor density, ventilation efficiency was confirmed to be the highest at the upper supply-lower exhaust, and it is judged that introducing it can achieve about 3.7 times ventilation effect at the same maintenance cost. Through this study, it is expected that the workplace will be able to secure workers' safety by applying simulation results and installing ventilation ports.

Experimental Study on Wind-driven Ventilation in Basement Parking Lots of Apartment (풍동실험을 통한 공동주택 지하주차장의 자연환기 성능 연구)

  • Lee, Si-Woong;Roh, Ji-Woong
    • KIEAE Journal
    • /
    • v.4 no.3
    • /
    • pp.103-107
    • /
    • 2004
  • This paper aims for evaluating the wind-driven ventilation in basement parking lots of apartment. Wind tunnel tests coupled with tracer gas method were conducted, and classified by wind directions and opening types. The test results showed that, as for wind-driven ventilations, stack type openings were more successful than scuttle vent. Finally, according to Weibull distribution in Seoul, yearly averaged wind-driven ventilation rate was calculated.

A Study on the Evaluations of Damage Impact due to VCE in Liquid Hydrogen Charging Station (액화수소 충전스테이션에서 VCE로 인한 피해영향평가에 관한 연구)

  • Lee, Suji;Chon, Young Woo;Lee, Ik Mo;Hwang, Yong Woo
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.5
    • /
    • pp.56-63
    • /
    • 2017
  • Hydrogen charging station was invested and supported around the world. In this study, the extent of damage caused by VCE in the charging station handling liquefied hydrogen was calculated, and the human and material damage was estimated through the Probit model. In addition The optimal height of vent stack for low temperature hydrogen was set. The damage range is 8.24m in small scale, 14.10m in medium scale, and 22.38m in large scale based on interest overpressure 6.9kPa. In case of death due to pulmonary hemorrhage, 50m of the small and medium scale and 100m of the large scale were injured. Structural damage was 200m in small scale, 300m in medium scale and 500m in large scale. The optimum height of the vent stack is 4.7 m in small scale, 8.8 m in medium scale and 16.9 m in large scale.

An Investigation on the Technical Progress of Test Production for Gas Hydrate Development (가스하이드레이트 시험생산 기술개발 동향)

  • Park, Seoung-Soo;Ju, Woo-Sung;An, Seung-Hee;Lee, Jeong-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.705-708
    • /
    • 2009
  • For the Gas hydrate Research and Development in Korea, the prospect area I & II was surveyed and drilled during the first phase. At the result, we succeeded to discovering gas hydrate real sample at BSR reflection and vent structure. This expedition processing contributes to developing the offshore seismic survey technologies and data processing of Korea. But Korean gas hydrate test production research, in spite of activating test production at other countries, is such a limitation about technician, GH production technologies and E&P processing. First of all, there is no exist in Korea to application site for the their production research results. In this paper, we have studied the gas hydrate reservoir selection technics of the DOE & BPXA for the ANS test production. And this result will helpful to preparation of gas hydrate test production in Korea.

  • PDF

Modeling the Behavior of Trapped Air in Die Cavity During Sheet Metal Forming (판재성형 해석시 금형내의 공기거동 모델링)

  • Choi, Kwang-Yong;Kim, Heon-Young
    • Transactions of Materials Processing
    • /
    • v.20 no.5
    • /
    • pp.377-386
    • /
    • 2011
  • During stamping processes, the air trapped between sheet metal and the die cavity can be highly compressed and ultimately reduce the shape accuracy of formed panels. To prevent this problem, vent holes and passages are sometimes drilled into the based on expert experience and know-how. CAE can be also used for analyzing the air behavior in die cavity during stamping process, incorporating both elasto-plastic behavior of sheet metal and the fluid dynamic behavior of air. This study presents sheet metal forming simulation combined simultaneously with simulation of air behavior in the die cavity. There are three approaches in modeling of air behavior. One is a simple assumption of the bulk modulus having a constant pressure depending on volume change. The next is the use of the ideal gas law having uniform pressure and temperature in air domain. The third is FPM (Finite point method) having non-uniform pressure in air domain. This approach enables direct coupling of mechanical behavior of solid sheet metal and the fluid behavior of air in sheet metal forming simulation, and its result provides the first-hand idea for the location, size and number of the vent holes. In this study, commercial software, PAM-$STAMP^{TM}$ and PAM-$SAFE^{TM}$, were used.

One-cyclic Volcanic Processes at Udo Crater, Korea (우도(牛島) 분화구(噴火口)에서의 일윤회(一輪廻) 화산과정(火山過程))

  • Hwang, Sang Koo
    • Economic and Environmental Geology
    • /
    • v.26 no.1
    • /
    • pp.55-65
    • /
    • 1993
  • Udo Island, some 3 km off the coast of Sungsan Peninsula at the eastern promontory of Cheju Island, occurs in such a regular pattern on the sequences which reprent an excellent example of an eruptive cycle. The island comprises a horseshoe-shaped tuff cone, a nested cinder cone on the crater floor, and a lava delta which extends over northwest from the moat between two cones. The volcanic sequences suggest volcanic processes that start with emergent Surtseyan eruption, progress through Strombolian eruption and end with lava effusion followed by reworking of smooth tephra on the tuff cone. Eruptive environment and hydrology of vent area in the Udo tuff cone are poorly constrained because the stratigraphic units under the tuff cone are unknown. It is thoughl, however, that the tuff cone could be mainly emergent because the present cone deposits show no evidence of marine reworking, and standing body of sea water could play a great role. The emergent volcano is characterized by distinctive steam-explosivity that results primarily from a bulk interaction between rapidly ascending magma and a highly mobile slurry. The sea water gets into the vent by flooding accross or through the top or breach of tephra cone. Udo tuff cone was constructed from Surtseyan eruption which went into with tephra finger jetting activities in the early stage, late interspersed with continuous uprush activities and proceeded to only continuous uprush activities in the last. When the enclosure of the vent by a long-lived tephra barrier would prevent the flooding and thus allow the vent to dry out, the Surtseyan eruption ceased to transmit into Strombolian activities, which constructed a cinder cone on the crater floor of the tuff cone. The Strombolian eruption ceased when magma in the conduit gradually became depleted in gas. In the case of Udo, the last magmatic activity was Hawaiian-type (and/or fountain) which accumulated basalt lava delta. And then the loose tephra of the tuff cone reworked over the moat lava and the northeastern flank.

  • PDF