DOI QR코드

DOI QR Code

Method to Derive the Optimal Vent Position when Flammable Liquid Leaks Based on CFD

CFD 기반 인화성 액체 누출 시 최적의 환기구 배치 도출 방안

  • Eun-Hee Kim (Dept. of Chemicals Engineering, Chonnam National University) ;
  • Seung-Hyo An (Dept. of Chemicals Engineering, Chonnam National University) ;
  • Jun-Seo Lee (Dept. of Chemicals Engineering, Chonnam National University) ;
  • Byung-Chol Ma (Dept. of Chemicals Engineering, Chonnam National University)
  • 김은희 (전남대학교 화학공학과) ;
  • 안승효 (전남대학교 화학공학과) ;
  • 이준서 (전남대학교 화학공학과) ;
  • 마병철 (전남대학교 화학공학과)
  • Received : 2023.09.01
  • Accepted : 2024.01.16
  • Published : 2024.03.31

Abstract

If flammable liquid leaks, vapor evaporated from the pool can cause poisoning or suffocation to workers, leading to secondary accidents such as fires and explosions. To prevent such damage, ventilation facilities shall be installed when designing indoor workplaces. At this time, the behavior varies depending on the characteristics of the leaked chemical, so it is necessary to select a suitable vent location according to the material. Therefore, 3D CFD simulations were introduced to derive optimal vent position and ventilation efficiency was quantitatively evaluated by vent position. At this time, assuming a situation in which flammable liquids leak at indoor workplaces to form pools, the concentration of vapor evaporated from pools was compared to derive the optimal vent position. As a result of research on toluene with high vapor density, ventilation efficiency was confirmed to be the highest at the upper supply-lower exhaust, and it is judged that introducing it can achieve about 3.7 times ventilation effect at the same maintenance cost. Through this study, it is expected that the workplace will be able to secure workers' safety by applying simulation results and installing ventilation ports.

인화성 액체가 누출되면 풀에서 증발된 증기로 인해 근로자들에게 중독이나 질식 등의 피해를 불러올 수 있으며 화재나 폭발 등의 2차 사고로 이어질 수 있다. 이러한 피해를 예방하기 위하여 실내 작업장을 설계할 때 환기설비를 설치해야 한다. 이때, 누출된 화학물질의 특성에 따라 거동이 상이하므로 물질에 따른 적합한 환기구의 위치를 선정할 필요가 있다. 따라서 최적의 환기구 배치를 도출하기 위하여 3D CFD 시뮬레이션을 도입하였고 환기구 배치에 따른 환기효율을 정량적으로 평가하였다. 이때, 실내 작업장에서 인화성 액체가 누출되어 풀을 형성하는 상황을 가정하였고 풀에서 증발된 증기의 농도를 비교하여 최적의 환기구 배치를 도출하였다. 증기밀도가 큰 톨루엔을 대상물질로 하여 연구를 진행한 결과, 상부급기-하부배기일 때 환기효율이 가장 높아 동일한 유지비용으로 약 3.7배의 환기효과를 보이는 것을 확인하였다. 본 연구를 통해 작업장은 시뮬레이션 결과를 적용하여 환기구를 설치함으로써 근로자의 안전성을 확보할 수 있을 것으로 기대한다.

Keywords

Acknowledgement

이 연구는 2023년도 환경부(한국화학물질관리협회)의 재원으로 화학물질 안전관리 특성화대학원 사업의 지원을 받아 수행된 연구입니다.

References

  1. 화학물질안전원 화학물질종합정보시스템, 화학물질 사고현황 및 사례, https://icis.me.go.kr:443/pageLink.do?menuNo=2020000&searchWord=&link=forward:/search/searchType2.do&upperMenuNo=2000000 (2023.11.21)
  2. Thibauld, P., Veronique, D., Benjamin, T., Christophe, W., Ludovic, D., Lechaudel, J.F., "Pool evaporation: Experimental tests at medium-scale with gasoline", Journal of Loss Prevention in the Process Industries, 65, (2020)
  3. Hong, G.P., "Analysis on the Air Exchange Rate in the Arcade Type Traditional Market Places Using Wind Tunnel Test and CFD", Dept. of Architectural Engneering The Graduate School Yonsei University, (2005)
  4. Yoo, S.J., Kang, J.W., Yang, J.H., "A Study on Evaluation of Ventilation Efficiency from Ventilation System and Volume in the Small Printing Facilities Using CFD", JAIK, 29(6), 263-270, (2013)
  5. 건축법 건축물의 설비기준 등에 관한 규칙 [별표 1의 5] 신축공동주택등의 기계환기설비의 설치기준(제11조제3항 관련)
  6. Ku, J.H., "An Experimental Study on the Ventilation Performance to Enhance Removal Efficiency of Indoor Hamful Gases", Fire Sci. Eng., 23(5), 117-124, (2009)
  7. Ku, J.H., "A Study on Characteristic Analysis for Indoor Ventilation Performance of Mechanical Ventilation System", KIGAS, 16(2), 31-37, (2012)
  8. M. Siddiqui, S. Jayanti, T. Swaminathan, "CFD analysis of dense gas dispersion in indoor environment for risk assessment and risk mitigation", J. Hazard. Mater., 209, 177-185, (2012)
  9. Xiaolu, Z., Qiubo, W., Xulei, H., Yuejuan, L., Yang, M., Kun, L., Li, Z., "Effect of the position and the area of the vent on the hydrogen dispersion in a naturally ventilated cubiod space with one vent on the side wall", Int. J. Hydrog. Energy., 47(14), 9071-9081, (2022)
  10. Lee, J.W., Cho, S.S., Park, C.H., Cho, H.T., Moon, I., "Numerical analysis of hydrogen ventilation in a confined facility with various opening sizes, positions and leak quantities", Computer Aided Chemical Engineering, Elsevier, 40, 559-564, (2017)
  11. Oh, J.E., "A study on the appropriate location of supply and exhaust for efficient ventilation in case of indoor accident by hazardous chemicals", Dept. of Environmental Engneering The Graduate School of Urban Sciences, (2016)
  12. Chung, K.C., Hsu, S.P., "Effect of ventilation pattern on room air and contaminant distribution", Building and Environment, 36(9), 989-998, (2001)
  13. An, J.S., "Evaluation of Airborne Infection Risk according to Operation of Mechanical Ventilation and Recirculation Airflow System", Dept. of Architectural Engineering The Graduate School University of Seoul, (2023)
  14. 한국산업안전보건공단, KOSHA GUIDE P-18-2012 인화성 물질의 누출에 대한 안전조치 기술지침, (2012)
  15. 화학물질관리법 시행규칙 [별표 5] 유해화학물질 취급시설 설치 및 관리 기준 세부기준
  16. Gexcon, A.S., "FLACS-CFD v22.1r2 User Manual", Technical Report, Gexcon AS, Bergen, Norway, (2022)
  17. 한국산업안전보건공단, KOSHA GUIDE P-75-2011 인화성 액체의 안전한 사용 및 취급에 관한 기술지침, (2011)
  18. Mohammad, D., Arshad, A., Faisal, K., "Dispersion modelling and analysis of hydrogen fuel gas released in an enclosed area: A CFD-based approach", Fuel, 184, 192-201, (2016)
  19. Khan, J.A., Feigley, C.E., Lee, E., Ahmed, M.R., Tamanna, S., "Effects of inlet and exhaust locations and emitted gas density on indoor air contaminant concentrations", Building and Environment, 41(7), 851-863, (2006)