• 제목/요약/키워드: Gas-Phase

검색결과 3,259건 처리시간 0.03초

폴리우레탄 감지막에 의한 표면탄성파 가스 센서의 감지능 향상 (Improved sensitivity of surface acoustic wave gas sensors by using polyurethane absorption layer)

  • 유범근;박용욱;최두진;김진상;윤석진;김현재
    • 센서학회지
    • /
    • 제16권5호
    • /
    • pp.349-354
    • /
    • 2007
  • This paper presents characteristics of surface acoustic wave (SAW) gas sensor for detecting volatile gases such as ethanol gas by measuring the phase shift of output signal. A delay-line with a center frequency of 400 MHz was fabricated on $128^{\circ}$ Y-Z $LiNbO_{3}$ substrates. Experimental results, which showed the phase change of the output signal under the absorption of volatile gas on sensor surface, were presented. The sensitivities of SAW delay lines coated with polyurethane films were greatly increased compared to those for uncoated devices. This SAW gas sensor system may be well suited for a high sensitivity electronic nose system.

Analysis of Flow Rate Inducing Voltage Loss in a 100 cm2 Class Molten Carbonate Fuel Cell

  • Lee, Choong-Gon
    • Journal of Electrochemical Science and Technology
    • /
    • 제2권1호
    • /
    • pp.20-25
    • /
    • 2011
  • This work focuses on the behavior of the overpotential increase due to a utilization rise in a molten carbonate fuel cell. The behavior is generally explained by Nernst loss, which is a kind of voltage loss due to the thermodynamic potential gradients in a polarization state due to the concentration distribution of reactant species through the gas flow direction. The evaluation of Nernst loss is carried out with a traditional experimental method of constant gas utilization (CU). On the other hand, overpotential due to the gas-phase mass-transport resistance at the anode and cathode shows dependence on the utilization, which can be measured using the inert gas step addition (ISA) method. Since the Nernst loss is assumed to be due to the thermodynamic reasons, the voltage loss can be calculated by the Nernst equation, referred to as a simple calculation (SC) in this work. The three values of voltage loss due to CU, ISA, and SC are compared, showing that these values rise with increases in the utilization within acceptable deviations. When we consider that the anode and cathode reactions are significantly affected by the gas-phase mass transfer, the behavior strongly implies that the voltage loss is attributable not to thermodynamic reasons, namely Nernst loss, but to the kinetic reason of mass-transfer resistance in the gas phase.

3차원 전계해석 기법을 이용한 GIS 삼상 일괄형 스페이서 고찰 (Three-dimensional Analysis for Three-phase Spacers in Gas Insulated System)

  • 강종성;이방욱;강성모;오일성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 C
    • /
    • pp.1620-1622
    • /
    • 2003
  • Recently, as the technology for the development of high voltage power apparatus using SF6 gas has made remarkable progress, it became possible to develop more compact power apparatus adopting single body substation system. In these gas insulated power apparatus, it is impossible to achieve perfect and safe insulation using only SF6 gas, because some solid insulation parts should be installed to support current-carrying conductor parts for electrical and mechanical safety. When spacers were installed in SF6 gas insulation system, they were exposed to severe electrical intensification which could reduce system insulation performance and restrict the rated operating voltage So, it is necessary to clarify the dielectric characteristics of spacers by analytically and experimentally, in order to design and develop more compact and optimum gas insulated systems. In this paper, the field distribution of three-phase spacers were investigated using three dimensional electrostatic field analysis tool adopting BEM method. And the obtained results were compared to the conventional two dimensional computations. According to these three dimensional calculations, it was possible to find out weak points in the spacer more clearly and these results could be applied to design more compact and optimum three phase spacer developments.

  • PDF

폴리우레탄 감지막에 의한 표면탄성파 가스 센서의 감지능 향상 (Improved sensitivity of surface acoustic wave gas sensor by using polyurethane absorption layer)

  • 유범근;박용욱;최두진;김현재;김진상;윤석진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.364-364
    • /
    • 2007
  • This paper presents characteristics of surface acoustic wave (SAW) gas sensor for detecting volatile gases such as ethanol gas by measuring phase shift of output signal. A delay-line with a center frequency of 400MHz was fabricated on 128o Y-Z $LiNbO_3$ substrates. Experimental results, which show the phase change of output signal under the absorption of volatile gas on sensor surface, were presented. The sensitivities of SAW delay lines coated with polyurethane films are greatly increased compared to those for uncoated devices. This SAW gas sensor system may be well suited for a high sensitivity electronic nose system.

  • PDF

Percolation Approach to the Morphology of Rigid-Flexible Block Copolymer on Gas Permeability

  • 박호범;하성룡;이영무
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1997년도 추계 총회 및 학술발표회
    • /
    • pp.69-70
    • /
    • 1997
  • Polyimides and related polymers, when synthesized from aromatic monomers, have generally rigid chain structures resulting in a low gas permeability. The rigidity of polymer chains reduces the segmental motion of chains and works as a good barrier against gas transport. To overcome the limit of use as materials of gas separation membranes due to low gas permeability, block copolymers with the incorporation of flexible segments like siloxane linkage and ether linkage have been studied. These block copolymers have microphase-separated structures composed of microdomains of flexible poly(dimethylsiloxane) or polyether segments and of rigid polyimides segments. In case of rigid-flexible block copolymers, the characteristics of both phases for gas permeation are of great difference. The permeation of gas molecules occurs favorably through microdomains of flexible segments, whereas those of rigid segments hinder the permeation of gas molecules. Accordingly the increase of content of flexible segments in a rigid polymer matrix will increase the gas permeability of the membrane linearly. However, this prediction does not satisfy enough many experimental results and in particular the drastic increase of the permeability is observed in a certain volume fraction. It was proposed that the gas transport mechanism is dominated by diffusion rather than gas solubility in a certain content of flexible phase if solution-diffusion mechanism is adopted. However, the transition from solubility-dependent to diffusion-dependent cannot be explained by the understanding of mechanism itself. Therefore, we consider an effective chemical path which permeable phase can form in a microheterogenous medium, and percolation concept is introduced to describe the permeability transition at near threshold where for the first time a percolation path occurs. The volume fraction of both phases is defined as V$_{\alpha}$ and V$_{\beta}$ in block copolymers, and the volume of $\beta$ phase in the threshold forming geometrically a traversing channel is defined as V$_{\betac}$. The formation mechanism of shortest chemical channel is schematically depicted in Fig. 1.

  • PDF

천연가스 고체수송 및 저장을 위한 가스 하이드레이트 상평형 조건에 대한 연구 (Phase Equilibrium Conditions of Gas Hydrates for Natural Gas Solid Transportation and Storage)

  • 전용한;김종윤;김종보;김남진
    • 설비공학논문집
    • /
    • 제20권4호
    • /
    • pp.266-273
    • /
    • 2008
  • Natural gas hydrates are ice-like solid substances, which are composed of water and natural gas, mainly methane. They have three kinds of crystal structures of five polyhedra formed by hydrogen-bonded water molecules, and are stable at high pressures and low temperatures. They contain large amounts of organic carbon and widely occur in deep oceans and permafrost regions. Therefore, they are expected as a potential energy resource in the future. Especially, $1m^3$ natural gas hydrate contains up to $172Nm^3$ of methane gas, de pending on the pressure and temperature of production. Such large volumes make natural gas hydrates can be used to store and transport natural gas. In this study, three-phase equilibrium conditions for forming natural gas hydrate were numerically obtained in pure water and single electrolyte solution containing 3 wt% NaCl. The results show that the predictions match the previous experimental values very well, and it was found that NaCl acts as an inhibitor. Also, help gases such that ethane, propane, i-butane, and n-butane reduce the hydrate formation pressure at the same temperature.

오일-질소가스 혼합유체를 이용한 고온 오일플러싱 시스템 공정설계에 관한 연구 (A Study on Process Design of Hot Oil Flushing System Using Oil-Nitrogen Gas Mixing Fluid)

  • 이윤호;최부홍
    • 해양환경안전학회지
    • /
    • 제23권5호
    • /
    • pp.541-548
    • /
    • 2017
  • 본 연구에서는 해양플랜트설비 건조 현장에서 사용되고 있는 기존 고온 오일 플러싱 장비에 대한 성능개선을 위해 기존의 플러싱 장치에 사용되던 오일에 질소가스를 혼합한 고온 오일 플러싱 시스템에 대하여 국제표준화기구 코드(ISO code)를 기준으로 이론적 연구를 수행하였다. 연구를 위해 오일-질소가스 혼합유체 플러싱 시스템 공정을 설계 후 청정성능에 영향을 주는 혼합유체의 혼합비율, 온도, 레이놀즈수 및 액상분율 등에 대한 공정모사 결과도 분석하였다. 그 결과 관 직경과 가스상의 체적분률이 일정한 상태에서 혼합유체의 체적유량이 증가될수록 수평 유압배관 입출구의 액상분율 차이 ${\Delta}{\alpha}_L$ 값은 증가하게 되고 배관길이 방향의 위치에 따라 오일과 질소가스 기포 사이의 상분포가 달라짐을 확인했다. 이러한 상분포의 변화는 오일-질소가스 혼합유체 플러싱 시스템의 청정성능에도 커다란 영향을 줄 것으로 예상된다.

생약(生樂) 약침액(藥鍼液)이 암예방(癌豫防) 효소계(酵素系)에 미치는 영향(影響) (Effect of Aqua-acupuncture Solution of Medicinal Plants on Induction of Anticarcinogenic Phase II Enzymes)

  • 임종국;문진영;조경희;손윤희;남경수
    • Korean Journal of Acupuncture
    • /
    • 제17권1호
    • /
    • pp.11-17
    • /
    • 2000
  • 금은화, 당귀, 감두를 이용하여 조제한 각각의 약침액을 이용하여 암예방효과를 살펴 보았다. 발암물질을 무독화시키는 QR 생성 유도를 생쥐의 간암세포인 Hepa1c1c7과 측정하였으며, 그 결과 금은화 약침액, 당귀 약침액, 감두약침액을 처리한 Hepa1c1c7에서 QR생성이 유도되었으며 GSH 생성을 살펴본 결과 Hepa1c1c7 세포에서 실험에 이용된 모든 생약 약침액에 의한 GSH 생성이 증가하였고, GST 생성 또한 증가하였다.

  • PDF