• Title/Summary/Keyword: Gas phase reaction

Search Result 453, Processing Time 0.031 seconds

Numerical Study of Interacting Premixed Flames Including Gas Phase Radiation (복사열전달을 고려한 상호작용하는 예혼합화염의 수치해석)

  • 임인권;정석호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.858-867
    • /
    • 1995
  • Characteristics of premixed flames in counter-flow system are numerically studied using a detailed chemical reaction mechanism including gas phase radiation. Without radiation effect accounted, low CO and high NO$_{x}$ emission indices are observed, when strain rate decreases, due to increased residence time and higher flame temperature. Higher NO$_{2}$ production has been also observed when two premixed flames are interacting or cold air stream is mixed with burned gas. The rate of NO$_{x}$ production and destruction is dependent upon the diffusional strength of H and OH radicals, the existence of NO and the concentration of HO$_{2}$. For radiating flames, the peak temperature and NO$_{x}$ production rate decreases as the strain rate decreases. At high strain rate, it is found that the effect of radiation on flame is little due to its negligible radiating volume. It is also found that NO$_{x}$ production from the interacting premixed flame is reduced due to reduced temperature resulting from radiation heat loss. It is concluded that the radiation from gas has significant effect of flame structure and on emission characteristics.ristics.

Study on Vaporization and Combustion of Spray in High Pressure Environment (고압에서의 분무의 증발 및 연소 현상에 관한 연구)

  • Wang, Tae-Joong;Baek, Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1273-1281
    • /
    • 2003
  • The present study is mainly motivated to investigate the vaporization, auto-ignition, and combustion of liquid fuel spray injected into high pressure environment. The unsteady, multi-dimensional models were used for realistic simulation of spray as well as prediction of accurate ignition delay time. The Separated Flow (SF) model which considers the finite rate of transport between liquid and gas phases was employed to represent the interactions between spray and gas field. Among the SF models, the Discrete Droplet Model (DDM) which simulates the spray using finite number of representative samples of discrete droplets was adopted. The Eulerian-Lagrangian formulation was used to analyze the two-phase interactions. In order to predict an evaporation rate of droplet in high pressure environment, the high pressure vaporization model was applied using thermodynamic equilibrium and phase equilibrium at droplet surface. The high pressure effect as well as high temperature effect was considered in the calculation of liquid and gas properties. In case of vaporization, an interaction between droplets was studied through the simulation of spray. The interaction is shown up differently whether the ambient gas field is at normal pressure or high pressure. Also, the characteristics of spray behavior in high pressure environment were investigated through the comparison with normal ambient pressure case. In both cases, the spray behaviors are simulated through the distributions of temperature and reaction rate in gas field.

Transition-State Structures for Solvolysis of Methanesulfonyl Chloride

  • 양기열;강금덕;구인선;이익준
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.11
    • /
    • pp.1186-1191
    • /
    • 1997
  • Solvolyses of methanesulfonyl chloride (CH3SO2Cl) in water and methanol have been studied theoretically using ab initio self-consistent reaction field (SCRF) molecular orbital method. All stationary structures including transition state on the potential energy surface in solution have been found and compared with the gas phase structures. The overall reaction occurs via a concerted SN2 mechanism with a non-cyclic trigonal bipyramidal transition state, and the activation barrier is lowered significantly in solution. The transition state for the hydrolysis reaction is looser than that for the methanolysis reaction, and this is in accord with the experimental findings that an SN2 type mechanism, which is shifted toward an SN1 process or an SAN process in the hydrolysis and alcoholysis reaction, respectively, takes place. The catalytic role of additional solvent molecules appears to be a purely general-base catalysis based on the linear transition structures. Experimental barrier can be estimated by taking into account the desolvation energy of nucleophile in the reaction of methanesulfonyl chloride with bulk solvent cluster as a nucleophile.

Improvement of Photo-Alignment Characteristics for Device Applications

  • Hwang, Yong-Jae;Choi, Kil-Yeong;Yi, Mi-Hie;Hong, Sung-Hwan;Shin, Dong-Myung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.867-870
    • /
    • 2007
  • In order to solve image sticking phenomena, the gas-phase and liquid-phase interfacial reactions of photosensitive polyimide can annihilate photoreactive carbon-carbon double bonds, which remain after photo-alignment process. The annihilation processes dramatically affect residual DC and photochemical reorientation of photoactive functional groups.

  • PDF

Fabrication and Properties of Reaction Bonded SiC Hot Gas Filter Using Si Melt Infiltration Method (용융 Si 침윤방법에 의한 반응소결 탄화규소 고온가스 필터의 제조 및 특성)

  • 황성식;김태우
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.9
    • /
    • pp.891-896
    • /
    • 2003
  • Novel fabrication technique was developed for high strength Reaction-Bonded SiC (RBSC) hot gas filter for use in IGCC (Integrated Gasification Combined Cycle) system. The room and high temperature fracture strengths for Si-melt infiltrated reaction-bonded SiC were 50-123, and 60-66 MPa, respectively. The average pore size was 60-70 $\mu\textrm{m}$ and the porosity was about 34 vol%. RBSC infiltrated with molten silicon showed improved fracture strength at high temperature, as compared to that of clay-bonded SiC, due to SiC/Si phase present within SiC phase. The thickness for SiC/Si phase was increased with increasing powder particle size of SiC from 10 to 34 $\mu\textrm{m}$. Pressure drop with dust particles showed similar response as compared to that for Schumacher type 20 filter. The filter fabricated in the present study showed good performance in that the filtered powder size was reduced drastically to below 1 $\mu\textrm{m}$ within 4 min.

A Study on the Installation of Rupture Disk for Emergency Discharge of Dangerous Substances in Case of Styrene Monomer Runaway Reaction (스티렌모노머 폭주반응 시 위험물 비상 배출을 위한 파열판 적정 크기 선정에 관한 연구)

  • Sang Ryung Kim;Jae Min Ryu;Hyang Nam Choi;Jong Su Hyun;Hyung Sik Byun
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.2
    • /
    • pp.24-31
    • /
    • 2024
  • In the chemical industry, fires and explosions constantly occur due to runaway reactions during the production of various chemical products. To prevent this, much research has been conducted, and the possibility of runaway reactions for each substance is reviewed and interlocking devices are installed to prepare for adverse reactions to prepare for fires and explosions. However, despite legal and technical safety measures, accidents due to runaway reactions still occur every year. Accordingly, in this study, based on cases of fire and explosion accidents in styrene monomer reactors, the discharge capacity during runaway reactions was examined through experiments and graphs. Unlike the commonly calculated fire equation, in the case of a runaway reaction where pressure and temperature increase rapidly, discharge is made in two phases rather than a single phase, so the size of the rupture disk must also increase, and the orientation must be adjusted before the rupture disk is installed at the top of the pressure vessel. It was found that position adjustment was necessary.

Analysis of fatty acid methyl ester in bio-liquid by hollow fiber-liquid phase microextraction

  • Choi, Minseon;Lee, Soyoung;Bae, Sunyoung
    • Analytical Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.174-181
    • /
    • 2017
  • Bio-liquid is a liquid by-product of the hydrothermal carbonization (HTC) reaction, converting wet biomass into solid hydrochar, bio-liquid, and bio-gas. Since bio-liquid contains various compounds, it requires efficient sampling method to extract the target compounds from bio-liquid. In this research, fatty acid methyl ester (FAME) in bio-liquid was extracted based on hollow fiber supported liquid phase microextraction (HF-LPME) and determined by Gas Chromatography-Flame Ionization Detector (GC-FID) and Gas Chromatography/Mass Spectrometry (GC/MS). The well-known major components of biodiesel, including methyl myristate, palmitate, methyl palmitoleate, methyl stearate, methyl oleate, and methyl linoleate had been selected as standard materials for FAME analysis using HF-LPME. Physicochemical properties of bio-liquid was measured that the acidity was 3.30 (${\pm}0.01$) and the moisture content was 100.84 (${\pm}3.02$)%. The optimization of HF-LPME method had been investigated by varying the experimental parameters such as extraction solvent, extraction time, stirring speed, and the length of HF at the fixed concentration of NaCl salt. As a result, optimal conditions of HF-LPME for FAMEs were; n-octanol for extraction solvent, 30 min for extraction time, 1200 rpm for stirring speed, 20 mm for the HF length, and 0.5 w/v% for the concentration of NaCl. Validation of HF-LPME was performed with limit of detection (LOD), limit of quantitation (LOQ), dynamic range, reproducibility, and recovery. The results obtained from this study indicated that HF-LPME was suitable for the preconcentration method and the quantitative analysis to characterize FAMEs in bio-liquid generated from food waste via HTC reaction.

Decontamination of Chemical Warfare Agent Simulants using Vapor-phase Hydrogen Peroxide (과산화수소 증기를 이용한 유사화학작용제의 제독)

  • Kim, Yun-Ki;Yoo, Hyun-Sang;Kim, Min-Cheol;Hwang, Hyun-Chul;Ryu, Sam-Gon;Lee, Hae-Wan
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.360-365
    • /
    • 2014
  • Vapor-phase hydrogen peroxide(VPHP) has been used as a sterilant in the field of medical and pharmaceutical application due to low corrosive than chlorine contained sterilant. In addition, it is well known that VPHP is effective for decontamination of chemical warfare agents by adding ammonia gas. In this study, the decontamination efficiency was confirmed about CEPS, DFP and dimethoate as simulants of HD, GD and VX using VPHP respectively. For this purpose, VPHP generated from self configured device was injected into decontamination chamber and maintained for reaction time. After the decontamination, the residues are analyzed by GC/MS and decontamination efficiency was calculated. Through by-product for each simulants, the similarities in reaction mechanism of chemical warfare agents were confirmed. CEPS was completely decontaminated at 30% relative humidity within 60 min. By adding ammonia gas, DFP and dimethoate were completely decontaminated within 30 and 150 min respectively.

Gas phase synthesis of Ga2O3 nanoparticles from gallium metal (기상합성법을 이용한 산화갈륨 나노분말의 제조)

  • Park, Jung Won;Won, Chang Min;Kwon, Jun Beom;Lee, Hyukjae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.6
    • /
    • pp.220-225
    • /
    • 2020
  • Gallium oxide nano-powder, the key starting material for IGZO target, is fabricated by gas phase synthesis using a new apparatus consist of reaction, transportation, and collection parts. As a result of gallium metal evaporation above 1150℃, Ga2O3 nano-powders, are successfully synthesized. The SEM images of the synthesized powders displace the spherical shaped powders without severe agglomeration. X-ray diffraction and PSA analysis show that the higher temperature at the reaction part results in the better crystallinity and larger powder size of the synthesized Ga2O3. To see the applicability to IGZO target, Ga2O3 nano-powders synthesized at 1250℃ are mixed with indium oxide and zinc oxide (In2O3 : Ga2O3 : ZnO = 1 : 1 : 1), and then sintered at 1400~1500℃. The highest sintered density of 5.83 g/㎤ (= 91 % of relative density) is achieved when sintered at 1450℃, showing better sinterability compared to the commercially available Ga2O3 powder, which has 5.61 g/㎤ of sintered density at the same condition.