Browse > Article
http://dx.doi.org/10.6111/JKCGCT.2020.30.6.220

Gas phase synthesis of Ga2O3 nanoparticles from gallium metal  

Park, Jung Won (Quanta Materials)
Won, Chang Min (School of Materials Science and Engineering, Andong National University)
Kwon, Jun Beom (Quanta Materials)
Lee, Hyukjae (School of Materials Science and Engineering, Andong National University)
Abstract
Gallium oxide nano-powder, the key starting material for IGZO target, is fabricated by gas phase synthesis using a new apparatus consist of reaction, transportation, and collection parts. As a result of gallium metal evaporation above 1150℃, Ga2O3 nano-powders, are successfully synthesized. The SEM images of the synthesized powders displace the spherical shaped powders without severe agglomeration. X-ray diffraction and PSA analysis show that the higher temperature at the reaction part results in the better crystallinity and larger powder size of the synthesized Ga2O3. To see the applicability to IGZO target, Ga2O3 nano-powders synthesized at 1250℃ are mixed with indium oxide and zinc oxide (In2O3 : Ga2O3 : ZnO = 1 : 1 : 1), and then sintered at 1400~1500℃. The highest sintered density of 5.83 g/㎤ (= 91 % of relative density) is achieved when sintered at 1450℃, showing better sinterability compared to the commercially available Ga2O3 powder, which has 5.61 g/㎤ of sintered density at the same condition.
Keywords
Gas-phase synthesis; Nanoparticles; Gallium oxide; Gallium metal;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 J.-Y. Jung, S.-H. Kim, E.-T. Kang, K.-S. Han, J.-H. Kim, K.-T. Hwang and W.-S. Cho, "Synthesis of Ga2O3 powders by precipitation method", J. Korean Cryst. Growth Cryst. Technol. 24 (2014) 8.   DOI
2 L. Li, W. Wei and M. Behrens, "Synthesis and characterization of α-, β-, and γ-Ga2O3 prepared from aqueous solutions by controlled precipitation", Solid State Sci. 14 (2012) 971.   DOI
3 U. Rambabu, N.R. Munirathnam, T.L. Prakash, B. Vengalrao and S. Buddhudu, "Synthesis and characterization of morphologically different high purity gallium oxide nanopowders", J. Mater. Sci. 42 (2007) 9262.   DOI
4 B.K. Kang, H.D. Lim, S.R. Mang, K.M. Song, M.K. Jung, S.-W. Kim and D.H. Yoon, "Synthesis and characterization of monodispersed β-Ga2O3 nanospheres via morphology controlled Ga4(OH)10SO4 precursors", Langmuir 31 (2015) 83.   DOI
5 S.-Y. Lee, X. Gao and H. Matsui, "Biomimetic and aggregation-driven crystallization route for room-temperature material synthesis: Growth of β-Ga2O3 nanoparticles on peptide assemblies as nanoreactors", J. Am. Chem. Soc. 129 (2007) 2954.   DOI
6 H.J. Bae, T.H. Yoo, Y. Yoon, I.G. Lee, J.P. Kim, B.J. Cho and W.S. Hwang, "High-aspect ratio β-Ga2O3 nanorods via hydrothermal synthesis", Nanomaterials 8 (2018) 594.   DOI
7 E.I. EL-Sayed, A.A. Al-Ghamdi, S. Al-Heniti, F. Al- Marzouki and F. El-Tantawy, "Synthesis of ultrafine β-Ga2O3 nanopowder via hydrothermal approach: A strong UV "excimer-like" emission", Mater. Lett. 65 (2011) 317.   DOI
8 J.-Y. Jung, S.-H. Kim, E.-T. Kang, K.-S. Han, J.-H. Kim, K.-T. Hwang and W.-S. Cho, "Synthesis of nanosized Ga2O3 powders by polymerized complex method", J. Korean Cryst. Growth Cryst. Technol. 23 (2013) 302.   DOI
9 G. Zhao, L. Chen, Y. Tang, B. Long, Z. Nie, L. He and H. Chen, "Growth of β-Ga2O3 nanoparticles doped with Tin by Ni2+ catalyzed chemical vapor deposition", Adv. Mater. Res. 873 (2013) 200.   DOI
10 H. Okamoto, "Ga-O (Gallium-Oxygen)", J. Phase Equilibria Diff. 29 (2008) 550.   DOI
11 S. Yatsuya, S. Kasukabe and R. Uyeda, "Formation of ultrafine metal particles by gas evaporation technique. I. Aluminum in helium", Japanese J. Appl. Phys. 12 (1973) 1675.   DOI
12 H. Hosono, "Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application", J. Non-Cryst. Solids 352 (2006) 851.   DOI
13 E. Fortunato, P. Barquinha and R. Martins, "Oxide semiconductor thin-film transistors: a review of recent advances", Adv. Mater. 24 (2014) 2945.   DOI
14 T. Kamiya, K. Nomura and H. Hosono, "Present status of amorphous In-Ga-Zn-O thin-film transistors", Sci. Technol. Adv. Mater. 11 (2010) 044305.   DOI
15 A. Suresh, P. Gollakota, P. Wellenius, A. Dhawan and J.F. Muth, "Transparent, high mobility of InGaZnO thin films deposited by PLD", Thin Solid Films 516 (2008) 1326.   DOI
16 K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors", Nature 432 (2004) 488.   DOI
17 Y. Liu, B. Sun, Y. Shu, X. Zeng, J. Zhua, J. Yi and J. He, "Preparation of superior IGZO ceramics by two-step sintering for application in IGZO thin film fabrication", J. Mater. Res. and Techno. 9 (2020) 5331.   DOI
18 C.C. Lo and T.E. Hsieh, "Preparation of IGZO sputtering target and its applications to thin-film transistor devices", Ceram. Int. 38 (2012) 3977.   DOI