• Title/Summary/Keyword: Gas permeation

Search Result 382, Processing Time 0.025 seconds

Analysis of Variables Influencing the Pressure Build-up and Volume Expansion of Kimchi Package (김치포장의 압력 및 부피 변화에 영향을 미치는 인자의 분석)

  • 이동선;최홍식;박완수
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.2
    • /
    • pp.429-437
    • /
    • 1999
  • A mathematical model was established for estimating changes in pressure and volume of permeable kimchi packages. The model comprises the CO2 gas production from kimchi and permeation of O2, CO2 and N2 through the permeable film or sheet. Using the developed model, the effects of various packaging variables on the pressure and volume changes were analyzed for rigid and flexible packag es of kimchi(3% salt content) at 15oC, and then effect of storage temperature was also looked into. In case of rigid pack of 400g, using the plastic sheet of high CO2 permeability and initial vacuumizing can help to relieve the problem of pressure build up. The lower fill weight can further reduce the pressure, but will result in higher packaging cost. For the flexible package of 3 kg, highly permeable films such as low density polyethylene(LDPE) and polypropylene can reduce the volume expansion. Higher ratio of CO2 permeability to O2 and N2 permeabilities are effective in reducing the volume expansion. Increased surface area cannot contribute to reduction of volume expansion for highly permeable flexible packages of kimchi. For the impermeable packages, pressure and volume at over ripening stage (acidity 1.0%) increase with decreased temperature, while those at optimum ripening stage(acidity 0.6%) change little with temperature. Pressure of permeable rigid LDPE package increases with tem perature at any ripening stage, and temperature affects the volume of flexible LDPE package very slightly. Experimental verification of the present results and package design with economical consid eration are needed as a next step for practical application.

  • PDF

A Study on the Permeance Through Polymer Membranes and Selectivity of $CH_4/N_2$ (폴리이미드와 폴리이써설폰 분리막을 이용한 $CH_4/N_2$의 투과선택도 특성)

  • Park, Bo-Ryoung;Kim, Dae-Hoon;Lee, Gang-Woo;Hwang, Taek-Sung;Lee, Hyung-Keun
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.498-504
    • /
    • 2011
  • In this research, hollow fiber membranes were used in order to investigate to permeation and selectivity of the $CH_4$ and $N_2$. Polyimide and polyethersulfone hollow fiber membrane were prepared by the dry-wet phase inversion method and the module was manufactured by fabricating fibers after surface coating with silicone elastomer. The scanning electron microscopy (SEM) studies showed that the produced fibers typically had an asymmetric structure. The permeance of $CH_4$ and $N_2$ were increased with pressure and temperature. However, the selectivity was decreased with increasing temperature. The permeances of $CH_4$ and $N_2$ were decreased with increasing the air gap and the effect of post-treatment on membrane showed the increase in permeance up to 3.2~7.0 times.

A Method to Monitor Vacuum Degree Using Capacitive Partial Discharge Coupler

  • Sun, Jong-Ho;Youn, Young-Woo;Hwang, Don-Ha;Yi, Sang-Hwa;Kang, Dong-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.959-964
    • /
    • 2012
  • Internal pressure of vacuum interrupter (VI) is one of the most important parameters in VI operation and may increase due to the outgassing from the materials inside VI or gas permeation through metal flange or ceramic vessel. The increase of the pressure above a certain level leads to the failures of switching or insulation. Therefore, an effective pressure check of VI is essential and an analysis of partial discharge (PD) characteristics is an effective monitoring method to identify the degree of the internal pressure of VI. This paper introduces a research work on monitoring the internal pressure of VI by analyzing PDs which were measured using a capacitive PD coupler. The authors have developed cost effective capacitive coupler based on the ceramic material that has an excellent insulation properties and the main component of the capacitive coupler is made by SrTiO3. Detectable internal pressure range and distinguishability of the internal pressure of VI were investigated. From the PD tests results, the internal pressure range, from $10^{-2}$ torr to 500 torr, can be monitored by PD measurements using the capacitive coupler and PD inception voltage (PDIV) follows the Paschen's law. In addition, rise time of PD pulse at 13.2kV decreases with the increase of the internal pressure of VI.

Research Trend on ZIF-8 Membranes for Propylene Separation (프로필렌 분리를 위한 ZIF-8 분리막의 연구 동향)

  • Kim, Jinsoo;Othman, Mohd Roslee
    • Membrane Journal
    • /
    • v.29 no.2
    • /
    • pp.67-79
    • /
    • 2019
  • High purity propylene (propene) is an octane-enhancing chemical and also feedstock to industrially important chemicals. Purification of propylene from propane mixture is technologically and financially challenging because of their close boiling points. ZIF-8 membrane has been increasingly researched due to its great potential to separate propylene from propane effectively by molecular sieving. The increasing interest in ZIF-8 membranes lies in the so called "gate opening" effect. The gate opening effect enlarges the membrane pores and preferentially allows propylene to permeate through the membrane pores, while retaining the larger and heavier propane molecules in the feed stream in order to effect high propylene separation from propylene/propane mixture. In this paper, the widely accepted methods of ZIF-8 membrane preparation and parameters affecting propylene permeation and selectivity in ZIF-8 membrane are identified and reviewed.

Synthesis of Dimer Acid Methyl Ester Using Base-treated Montmorillonite (염기 처리된 montmorillonite를 이용한 다이머산 메틸에스테르의 합성)

  • Yuk, Jeong Suk;Shin, Jihoon;Kim, Young-Wun
    • Tribology and Lubricants
    • /
    • v.35 no.2
    • /
    • pp.132-138
    • /
    • 2019
  • In this study, we demonstrate the effects of the acidic properties of montmorillonite (MMT), which is commonly used as a catalyst, on the conversion and selectivity of the dimer acid methyl ester (DAME) synthesis. We synthesize DAME by the dimerization of conjugated linoleic acid methyl ester (CLAME) and oleic acid methyl ester using MMT KSF. Incidentally, trimer acid methyl ester was formed as a by-product during the DAME synthesis. There is a necessity to adequately adjust the strength and quantity of the acid site to control the selectivity of DAME. Therefore, we vary the pH of the MMT acid by using various metal hydroxides. The purpose of this study is to increase the yield of monocyclic dimer acid methyl ester, which is a substance with adequate physical properties for industrial applications (e.g., lubricant and adhesive, etc.), using a heterogeneous catalyst. We report the dimerization of fatty acid methyl ester by using base treated-KSF, and apply it to conjugated soybean oil methyl ester. Then, we transmute the acid site properties of KSF, such as pH of 5 wt.% slurry KSF and various alkali metals (Li, Na, K, Ca). Characterization of base treated-KSF using a pH meter, x-ray diffraction, inductively coupled plasma-atomic emission spectrometer, Brunauer-Emmett-Teller surface analysis, and temperature-programmed desorption. We conduct an analysis of CLAME and DAME using nuclear magnetic resonance spectroscopy, gas chromatography, and gel permeation chromatography. Through these experiments, we demonstrate the effects of the acidic properties of KSF on the conversion and selectivity of the DAME synthesis, and evaluate its industrial potential by application to waste vegetable oil.

Preparation of TiCoxFe1-x(x=0.50~1.00) System Metal Membrane for Hydrogen Separation (수소분리용 TiCoxFe1-x(x=0.50~1.00)계 금속막 제조)

  • Jang, Kyu-young;Kang, Tae Beom
    • Membrane Journal
    • /
    • v.25 no.2
    • /
    • pp.191-201
    • /
    • 2015
  • We have studied on the preparation of $TiCo_xFe_{1-x}$(x=0.50~1.00) system alloy, the characteristics of $TiCo_xFe_{1-x}$(x=0.50~1.00) system alloy by X-ray diffractometer (XRD), pressure composition temperature (PCT) curve, scanning electron microscopy (SEM) and the $H_2-N_2$ gas mixture separation of $TiCo_xFe_{1-x}$(x=0.50~1.00)- stainless steel (SS) composite membranes. The formation of $TiCo_xFe_{1-x}$(x=0.50~1.00) system alloys with cubic crystal same as TiCo was confirmed by X-ray diffractometer. $TiCo_xFe_{1-x}$(x=0.50~1.00) system alloys showed the hysteresis at $120^{\circ}C$. As the Fe content of $TiCo_xFe_{1-x}$(x=0.50~1.00) system alloys increased, the hysteresis was increased both range x=0.90~1.00 and x=0.55~0.60, and the range x=0.55~0.90 gave decreased hysteresis. $TiCo_{0.55}Fe_{0.45}$ alloy was the one showed the lowest hysteresis among them. The lowest value of hydrogen permeation pressure of $TiCo_xFe_{1-x}$(x=0.50~1.00)-SS composite membrane was $TiCo_{0.55}Fe_{0.45}$-SS composite membrane with the value of 2.5 atm at $120^{\circ}C$; otherwise, $TiCo_{0.90}Fe_{0.10}$-SS composite had the highest pressure value among the membranes with the value of 10 atm. $TiCo_{0.55}Fe_{0.45}$-SS composite membrane was the best to separate the $H_2-N_2$ gas mixture excellently among the $TiCo_xFe_{1-x}$(x=0.50~1.00)-SS composite membranes since $TiCo_{0.55}Fe_{0.45}$ had the least hysteresis, and hydrogen permeation pressure was the lowest with value of 2.5 atm.

Prediction of the Tritium Behavior in Very High Temperature Gas Cooled Reactor Using TRITGO (TRITGO 코드를 이용한 초고온가스로 (VHTR) 삼중 수소 거동 예측)

  • Park, Jong-Hwa;Park, Ik-Kyu;Lee, Won-Jae
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.3
    • /
    • pp.113-120
    • /
    • 2008
  • In this study, The TRITGO code was introduced, which can predict the amount of tritium production, it's transport, removal, distribution and the level of contamination for the produced hydrogen by the tritium on the VHTR (very high temperature gas cooled reactor). The TRITGO code was improved so that the permeation to the IS Iodine Sulfide) loop for producing the hydrogen can be simulated. The contamination level of the produced hydrogen by the tritium was predicted by the improved code for the VHTR with 600MW thermal power. The contamination level for the produced hydrogen by tritium was predicted as 0.055 Bq/$H_2-g$. This level is three order of lower than the regulation value of 56 Bq/$H_2-g$ from Japan. From this study, the following results were obtained. it is important that the fuel coating (SiC layer) should be kept intact to prevent the tritium from releasing. Also it is necessary that the level of impurity such as 3He and Li in the helium coolant and the reflector consisting of the graphite should be kept as low as possible. It was found that the capacity of the purification system for filtering the impurities directly from the coolant will be the important design parameter.

Transport Properties of PEBAX Blended Membranes with PEG and Glutaraldehyde for SO2 and Other Gases (SO2와 다른 기체에 대한 PEG와 Glutaraldehyde가 혼합된 PEBAX 막의 투과 특성)

  • Cho, Eun Hye;Kim, Kwang Bae;Rhim, Ji Won
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.687-693
    • /
    • 2014
  • Poly(ether-block-amide) 1657 (PEBAX 1657) blended membranes with molecular weight 400 poly(ethylene glycol) (PEG 400) were prepared and their permeability was tested for the gases $N_2$, $O_2$, $CH_4$, $CO_2$, and $SO_2$ by the time-lag method. The permeation characteristics were investigated in terms of diffusivity and solubility, which are dominant factors for gas transport. With the addition of PEG 400, the permeability of all the gases increased and also the ideal selectivity for several pair gases was enhanced. In particular, selectivity for $CO_2/N_2$ ranged from 53.2 (pristine PEBAX 1657 membrane) to 84.1 (50% PEG 400 added), for $SO_2/CO_2$ from 38.9 to 50.7, and for $CO_2/CH_4$ from 17.7 to 31.4. The increase of both permeability and selectivity is mainly because of the increase of solubility of the gases, especially $CO_2$ and $SO_2$. To obtain durability against water vapor, glutaraldehyde (GA) was added to the PEBAX 1657/PEG 400 blended membranes. As a result, permeability decreased owing to a reduction of the free volume and ether oxide units, which are the main factors in elevating the permeability for the blended membranes, and selectivity decrease however; we believe that the durability of the resulting membranes would be increased.

Gas Permeation Characteristics of PEBAX-PEI Composite Membranes Containing ZIF-8 Modified with Amine (Amine으로 개질된 ZIF-8을 함유한 PEBAX-PEI 복합막의 기체투과 특성)

  • Yi, Eun Sun;Hong, Se Ryeong
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.679-687
    • /
    • 2020
  • In this study, poly(ether-block-amide) (PEBAX)/zeolitic imidazolate framework-8 (ZIF-8)-polyetherimide (PEI), and PEBAX/amine-modified ZIF-8 (amineZIF-8)-PEI composite membranes were prepared by varying the contents of ZIF-8 and amineZIF-8. Also the gas permeability properties of N2 and CO2 were investigated for each composite membrane. The N2 and CO2 permeability of the PEBAX/ZIF-8-PEI composite membrane increased as the ZIF-8 content increased, while the CO2/N2 selectivity gradually decreased. In the case of the PEBAX/amineZIF-8-PEI composite membrane, the permeability of N2 decreased slightly, and CO2 increased till amineZIF-8 amount was 0.5 wt% and then decreased when the content increased further. The CO2/N2 selectivity was the highest with a value of 78.3 at 0.5 wt% of amineZIF-8. because the amine modification in the amineZIF-8 improves the compatibility between PEBAX and amineZIF-8, It seems that amineZIF-8 was evenly dispersed in PEBAX, which could be greatly influenced by the porousity of ZIF-8 and also the affinity of amine toward CO2.

Gas Permeation Characteristics of CO2 and N2 through PEBAX/ZIF-8 and PEBAX/amineZIF-8 Composite Membranes (PEBAX/ZIF-8과 PEBAX/amineZIF-8 복합막을 통한 CO2와 N2의 기체투과 특성)

  • Hong, Se Ryeong;O, So Young;Lee, Hyun Kyung
    • Membrane Journal
    • /
    • v.30 no.6
    • /
    • pp.409-419
    • /
    • 2020
  • In this study, PEBAX/ZIF-8 and PEBAX/amineZIF-8 composite membranes were prepared according to the content of zeolitic imidazolate framework-8 (ZIF-8), amine-modified ZIF-8 (amineZIF-8), the gas permeability properties of N2 and CO2 were investigated for each composite membrane. In the case of the PEBAX/ZIF-8 composite membrane, the permeability of N2 and CO2 increased as the ZIF-8 content increased, and in the case of the PEBAX/amineZIF-8 composite membrane, the permeability of N2 and CO2 increased up to 20 wt% of amineZIF-8, but decreased at the higher content. CO2/N2 ideal selectivity increased up to 20 wt% of ZIF-8 and amineZIF-8 contents in both PEBAX/ZIF-8 and PEBAX/ amineZIF-8 composite membranes, and then decreased thereafter, in the case of PEBAX/amineZIF-8 composite membrane was less decreased. The reason for the highest CO2/N2 ideal selectivity at 20 wt% of amineZIF-8 is that amine modification improved the compatibility between PEBAX and amineZIF-8, and thus amineZIF-8 was evenly dispersed in PEBAX, resulting in the greatest effect of the porous ZIF-8 with a 3.4 Å pore size and the amine with affinity for CO2.