• Title/Summary/Keyword: Gas generate

Search Result 348, Processing Time 0.038 seconds

A Study on the Estimation of Carbon Dioxide Generation During High Purity Hydrogen Production According to Natural Gas Composition (천연가스 조성에 따른 수소 생산 시에 발생하는 이산화탄소 배출량 산출에 대한 연구)

  • CHO, JUNGHO;NOH, JAEHYUN;KIM, DONG SUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.485-489
    • /
    • 2019
  • Hydrogen is known to be a clean fuel which does not generate a green house gas during the combustion. However, about 8 kg of carbon dioxide is generated during the course of producing 1 kg of hydrogen through reforming, water gas shift reaction and pressure swing adsorption in order to obtain a high purity hydrogen over 99.999% by volume. In this work, carbon dioxide generation is estimated according to four kinds of natural gas compositions supplied by Korea Gas Corporation and regarding natural gas as pure methane. For the simulation of the modeling, PRO/II with PROVISION V10.2 at AVEVA was utilized and Peng-Robinson equation of state with Twu's alpha function was selected.

Development of Gasoline Engine Renewal CNG Generator and a Study on Exhaust Gas Characteristics of Equivalent Diesel Engine (가솔린 엔진개조 CNG 발전기 개발과 동급 디젤엔진의 배출가스 특성 연구)

  • Lee, Jung-Cheon;Kim, Ki-Ho;Lee, Jung-Min;Park, An-Young
    • Journal of Power System Engineering
    • /
    • v.22 no.6
    • /
    • pp.74-79
    • /
    • 2018
  • Compressed natural gas has a high octane number and low particulate emission characteristics as compared with petroleum-based fuels, so it can respond to exhaust gas regulations positively. A natural gas engine has been introduced to improve the quality of the atmosphere, a diversity of fuel, a stable supply, and it has widely been used in city buses and garbage trucks. Recently, the natural gas engine has received attention by overcoming the disadvantage of the theoretical air-fuel ratio method through the development of EGR cooler and engine parts with the development of LP-EGR technology. In this study, we try to develop the cogeneration system that can simultaneously generate electric power and heat by remodeling the gasoline engine to the mixer type CNG engine. As a result, it was able to reduce the NOx (approximately 77%) compared to the diesel engines with same displacement.

A Study on the Improvement of Leak Alarm Reliability of Gas Meter for Leak Inspection according to Boiler Usage Pattern (보일러 사용 패턴에 따른 누출점검용 가스계량기 누출 알람 신뢰도 개선 연구)

  • Jin-Du Yang;Seung-Won Lee;Eun-Il Choi;Sung-Hyeon Lim
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.72-76
    • /
    • 2023
  • Among urban gas-using facilities, more and more cases are using gas meters for leakage inspection instead of inspection ports for concealment pipes. Leak alarm alarms were continuously generated according to the boiler's special usage pattern in an environment where there was no actual gas leakage among some households where this meter was installed. It does not perform its original function of detecting actual gas leakage. Based on these problems, this study analyzed the conditions under which the gas meter for leakage inspection generates leakage alarms according to the boiler's special gas use pattern, and sought a set value that can generate an alarm only in the case of actual gas leakage. Through this, it is intended to relieve citizens' anxiety about gas use due to malfunction of the alarm and at the same time perform the original function of the meter that can detect leaking gas.

System Development of a 100 kW Molten Carbonate Fuel Cell II (Design of Stack and System) (100 kW급 용융탄산염 연료전지 시스템 개발 II(스택 및 시스템 설계))

  • Lim, Hee-Chun;Ahn, Kyo-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1322-1324
    • /
    • 2002
  • For developing a 100 kW MCFC power generation system, Several design parameters for a fuel cell stack and system analysis results by Cycle Tempo, a processing computer soft ware, were described. Approximately 170 cells are required to generate 100 kW at a current density of 125 mA/$cm^2$ with 6000 $cm^2$ cells. An overall heat balance was calculated to predict exit temperature. The 100 kW power is expected only under pressurized operation condition at 3 atm. Recycle of cathode gas by more than 50% is recommended to run the stack at 125 mA/$cm^2$ and 3 atm. Manifolds should be designed based on gas flow rates for the suggested operating condition. The fuel cell power generation system was designed conceptually with several choices of utilization of anode exhaust gas. Also system efficiency was calculated at various type of system and operation conditions.

  • PDF

Numerical Study on operating conditions of Autothermal Reformer using natural gas (천연가스를 이용한 자열개질기의 운영조건에 대한 수치해석 연구)

  • Kim, Jinwook;Kim, Sangwoo;Park, Dalyung;Jeon, Sanghee;Lee, Dohyung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.91.1-91.1
    • /
    • 2010
  • The Reforming system is an effective method to generate hydrogen which uses for fuel cell system. The purpose of this study is to present characteristics of an autothermal reformer at various operating conditions and to investigate ideal conditions for reforming efficiency. Dominant chemical reactions are Full Combustion, Steam Reforming reaction, Water-Gas Shift reaction and Direct Steam Reforming reaction. Operating parameters of the autothermal reformer are inlet temperature, Oxygen to Carbon Ratio, Steam to Carbon Ratio and Gas Hourly Space Velocity. Autothermal reformer is filled with catalysis of a packbed-bed type. Using numerical approach, we have investigated on various reaction conditions.

  • PDF

Performance Evaluation of Gas Cleaning Industrial Filters using a Bi-Modal Test Aerosol for Dust Loading Studies

  • Lee, Jae-Keun;Kim, Seong-Chan;Benjamin Y.H. Liu
    • Journal of Energy Engineering
    • /
    • v.5 no.2
    • /
    • pp.131-137
    • /
    • 1996
  • Typical size distribution of emission particulates is bi-modal in shape with particles in the fine mode (< 2.0 $\mu\textrm{m}$) and the coarse mode. An experimental study of pressure drop across the industrial gas cleaning filters has been conducted using particle mixture of fine alumina and coarse Arizona dusts with a rotating aerosol disperser to generate the bi-modal test aerosol. Pressure drop increased linearly with increasing mass loading. The pressure drop was found to be strongly dependent upon the mass ratio of fine to coarse particles. The smaller the mass ratio of fine to coarse particles and the higher face velocity are, the faster pressure drop rises. The fine particles and the greater inertia of the particle moving fast would cause a denser cake formation on the filter surface, resulting in a greater specific resistance to the gas flow.

  • PDF

Application Research on LPG Injector type Plasma Reformer (LPG 인젝터형 플라즈마 개질기 적용연구)

  • Kim, Changup;Lee, Deahoon
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • In this study, plasma reformer technology with a LPG injector was investigated. It was developed with injection of LPG fuel and air in a region where the plasma discharge to make the thermal decomposition carbon fuel and to generate additional hydrogen. As a result of reforming test, when power is 70~100W supply, about HC 0.7% of the full reformed gas and hydrogen was generated from 1.2 to 1.5 %.

Life cycle analysis on correlation relationship between GHG emission and cost of electricity generation system for energy resources (전과정을 고려한 에너지 자원별 전력생산의 온실가스 배출량과 비용의 상관관계 분석)

  • Kim, Heetae;Ahn, Tae Kyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.136.2-136.2
    • /
    • 2011
  • In this work, we analyzed correlations between life-cycle greenhouse gas (GHG) emissions and life-cycle cost of energy resources. Energy resources studied in this paper include coal, natural gas, nuclear power, hydropower, geothermal energy, wind power, solar thermal energy, and solar photovoltaic energy, and all of them are used to generate electricity. We calculated the mean values, ranges of maximum minus minimum values, and ranges of 90% confidence interval of life-cycle GHG emissions and life-cycle cost of each energy resource. Based on the values, we plotted them in two dimensional graphs to analyze a relationship and characteristics between GHG emissions and cost. Besides, to analyze the technical maturity, the GHG emissions and the range of minimum and maximum values were compared to each other. For the electric generation, energy resources are largely inverse proportional to the GHG emission and the corresponding cost.

  • PDF

System Development of a 100 kW Molten Carbonate Fuel Cell I (Design concept of Stack and System) (100 kW급 용융탄산염 연료전지 시스템 개발 I (시스템 및 스택 설계))

  • Lim, Hee-Chun;Ahn, Kyo-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1300-1302
    • /
    • 2001
  • For developing a 100 kW MCFC power generation system. Several design parameters for a fuel cell stack and system analysis results by Cycle Tempo, a processing computer soft ware, were described. Approximately 170 cells are required to generate 100 kW at a current density of $125mA/cm^2$ with $6000cm^2$ cells. An overall heat balance was calculated to predict exit temperature. The 100 kW power is expected only under pressurized operation condition at 3 atm. Recycle of cathode gas by more than 50% is recommended to run the stack at $125mA/cm^2$ and 3 atm. Manifolds should be designed based on gas flow rates for the suggested operating condition. The fuel cell power generation system was designed conceptually with several choices of utilization of anode exhaust gas. Also system efficiency was calculated at various type of system and operation conditions.

  • PDF

Fouling Reduction Characteristics of a Fluidized Bed Heat Exchanger for Flue Gas Heat Recovery (연도가스 열회수용 순환유동층 열교환기의 오염저감특성)

  • 이금배;전용두
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.8
    • /
    • pp.770-777
    • /
    • 2004
  • Fouling and cleaning tests are performed for a uniquely designed 7,000 ㎉/hr fluidized bed heat exchanger for exhaust gas heat recovery. Fuel rich condition is maintained in the combustor for a limited time period to generate soot that is to be deposited on the heat transfer surfaces (fouling) and 600 Um glass beads are circulated inside the heat exchanger system for cleaning and enhancing the heat transfer performance. According to the present experimental study, performance degradation mode could be monitored and the effect of particle circulation on the heat transfer improvement could be identified. Through the present study, it is demonstrated that circulating particles contribute not only to the fouling reduction in gas side, but also to the heat transfer enhancement of the unit, while other possible aging factors including water side corrosion seemed to contribute to the accumulated performance deterioration.