• Title/Summary/Keyword: Gas flow rate

Search Result 2,390, Processing Time 0.026 seconds

Determination of Betaine in Fructus Lycii Using Hydrophilic Interaction Liquid Chromatography with Evaporative Light Scattering Detection

  • Shin, Hyun-Du;Suh, Joon-Hyuk;Kim, Jung-Hyun;Lee, Hye-Yeon;Eom, Han-Young;Kim, Un-Yong;Yang, Dong-Hyug;Han, Sang-Beom;Youm, Jeong-Rok
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.553-558
    • /
    • 2012
  • A simple new method was developed for the determination of betaine in Fructus Lycii using hydrophilic interaction liquid chromatography with evaporative light scattering detection (HILIC-ELSD). Good chromatographic separation and reasonable betaine retention was achieved on a Kinetex HILIC column ($2.1{\times}100mm$, $2.6{\mu}m$) packed with fused-core particle. The mobile phase consisted of (A) acetonitrile and (B) 10 mM ammonium formate (pH 3.0)/acetonitrile (90/10, v/v). It was used with gradient elution at a flow rate of 0.7 mL/min. The column temperature was set at $27.5^{\circ}C$ and the injection volume was $10{\mu}L$. The ELSD drift tube temperature was $50^{\circ}C$ and the nebulizing gas (nitrogen) pressure was 3.0 bar. Stachydrine, a zwitterionic compound, was used as an internal standard. Calibration curve over $10-250{\mu}g/mL$ showed good linearity ($R^2$ > 0.9992) and betaine in the 70% methanol extract of Fructus Lycii was well separated from other peaks. Intraand inter-day precision ranged from 1.1 to 3.0% and from 2.4 to 5.3%, respectively, while intra- and inter-day accuracy ranged from 100.0 to 107.0% and from 94.3 to 103.9%, respectively. The limit of quantification (LOQ) was $10{\mu}g/mL$ and the recoveries were in the range of 98.2-102.7%. The developed HILIC-ELSD method was successfully applied to quantitatively determine the amount of betaine in fourteen Fructus Lycii samples from different locations, demonstrating that this method is simple, rapid, and suitable for the quality control of Fructus Lycii.

Optimization of ZnO-based transparent conducting oxides for thin-film solar cells based on the correlations of structural, electrical, and optical properties (ZnO 박막의 구조적, 전기적, 광학적 특성간의 상관관계를 고려한 박막태양전지용 투명전극 최적화 연구)

  • Oh, Joon-Ho;Kim, Kyoung-Kook;Song, Jun-Hyuk;Seong, Tae-Yeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.42.2-42.2
    • /
    • 2010
  • Transparent conducting oxides (TCOs) are of significant importance for their applications in various devices, such as light-emitting diodes, thin-film solar cells, organic light-emitting diodes, liquid crystal displays, and so on. In order for TCOs to contribute to the performance improvement of these devices, TCOs should have high transmittance and good electrical properties simultaneously. Sn-doped $In_2O_3$ (ITO) is the most commonly used TCO. However, indium is toxic and scarce in nature. Thus, ZnO has attracted a lot of attention because of the possibility for replacing ITO. In particular, group III impurity-doped ZnO showed the optoelectronic properties comparable to those of ITO electrodes. Al-doped ZnO exhibited the best performance among various doped ZnO films because of the high substitutional doping efficiency. However, in order for the Al-doped ZnO to replace ITO in electronic devices, their electrical and optical properties should further significantly be improved. In this connection, different ways such as a variation of deposition conditions, different deposition techniques, and post-deposition annealing processes have been investigated so far. Among the deposition methods, RF magnetron sputtering has been extensively used because of the easiness in controlling deposition parameters and its fast deposition rate. In addition, when combined with post-deposition annealing in a reducing ambient, the optoelectronic properties of Al-doped ZnO films were found to be further improved. In this presentation, we deposited Al-doped ZnO (ZnO:$Al_2O_3$ = 98:2 wt%) thin films on the glass and sapphire substrates using RF magnetron sputtering as a function of substrate temperature. In addition, the ZnO samples were annealed in different conditions, e.g., rapid thermal annealing (RTA) at $900^{\circ}C$ in $N_2$ ambient for 1 min, tube-furnace annealing at $500^{\circ}C$ in $N_2:H_2$=9:1 gas flow for 1 hour, or RTA combined with tube-furnace annealing. It is found that the mobilities and carrier concentrations of the samples are dependent on growth temperature followed by one of three subsequent post-deposition annealing conditions.

  • PDF

Quality Properties of Conger Eel (Conger myriaster) Oils Extracted by Supercritical Carbon Dioxide and Conventional Methods (초임계 이산화탄소 및 유기용매를 이용하여 추출된 붕장어(Conger myriaster) 오일의 품질특성)

  • Park, Jin-Seok;Cho, Yeon-Jin;Jeong, Yu-Rin;Chun, Byung-Soo
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.275-282
    • /
    • 2019
  • In this study, the extraction of Conger myriaster oil by using supercritical carbon dioxide (SC-CO2) and organic solvent was investigated. The extraction conditions conducted for SC-CO2 varied for pressure (25, 30 MPa) and temperature (45, 55 ℃), while the SC-CO2 flow rate was kept constant during the experiment (27 g min-1) and hexane was used as a conventional organic solvent. The extraction yield indicated that the best extraction condition would be SC-CO2 at 55 ℃ and 30 MPa, resulting in the highest yield of 37.73 ± 0.14%. The oils were characterized for their fatty acid (FAs) composition using gas chromatography, while it was revealed that the major FAs were mystric acid, palmitoleic acid, oleic acid, electroosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). The oxidation stability of the extracted C. myriaster oil was evaluated by measuring the acid value, peroxide value, and free fatty acid. The best oxidative stability was obtained from SC-CO2 extracted oil at 30 MPa and 55 ℃. There was a significant difference in the color properties of the SC-CO2 and hexane extracted oils, with the SC-CO2 extracted oil showing better chromaticity than the oil extracted using hexane. Extracting oils from C. myriaster with SC-CO2 could bring better economic benefits than using organic solvents. When supercritical carbon dioxide was used, there was no post-treatment process; thus, it was confirmed that this is a more environmentally friendly oil extraction method.

Kinetic Investigation of CO2-CH4 Reaction over Ni/La2O3 Catalyst using Photoacoustic Spectroscopy

  • Oh, Hyun-Jin;Kang, Jin-Gyu;Heo, Eil;Lee, Sung-Han;Choi, Joong-Gill
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2615-2620
    • /
    • 2014
  • Ni/$La_2O_3$ with a high dispersion was prepared by reduction of $La_2O_3$ perovskite oxide to examine the catalytic activity for the $CO_2-CH_4$ reaction. The Ni/$La_2O_3$ catalyst was found to be highly active for the reaction. The ratios of $H_2$/CO were measured in a flow of the reaction mixture containing $CO_2/CH_4$/Ar using an on-line gas chromatography system operated at 1 atm and found to be varied with temperature between 0.66 and 1 in the temperature range of $500-800^{\circ}C$. A kinetic study of the catalytic reaction was performed in a static reactor at 40 Torr total pressure of $CO_2/CH_4/N_2$ by using a photoacoustic spectroscopy technique. The $CO_2$ photoacoustic signal varying with the concentration of $CO_2$ during the catalytic reaction was recorded as a function of time. Rates of $CO_2$ disappearance in the temperature range of $550-700^{\circ}C$ were obtained from the changes in the $CO_2$ photoacoustic signal at early reaction stage. The plot of ln rate vs. 1/T showed linear lines below and above $610^{\circ}C$. Apparent activation energies were determined to be 10.4 kcal/mol in the temperature range of $550-610^{\circ}C$ and 14.6 kcal/mol in the temperature range of $610-700^{\circ}C$. From the initial rates measured at $640^{\circ}C$ under various partial pressures of $CO_2$ and $CH_4$, the reaction orders were determined to be 0.43 with respect to $CO_2$ and 0.33 with respect to $CH_4$. The kinetic results were compared with those reported previously and used to infer a reaction mechanism for the Ni/$La_2O_3$-catalyzed $CO_2-CH_4$ reaction.

Concise Bedside Surgical Management of Profound Reperfusion Injury after Vascular Reconstruction in Severe Trauma Patient: Case Report

  • Chung, Hoe Jeong;Kim, Seong-yup;Byun, Chun Sung;Kwon, Ki-Youn;Jung, Pil Young
    • Journal of Trauma and Injury
    • /
    • v.29 no.4
    • /
    • pp.204-208
    • /
    • 2016
  • For an orthopaedic surgeon, the critical decisions to either amputate or salvage a limb with severe crushing injury with progressive ischemic change due to arterial rupture or occlusion can become a clinical dilemma at the Emergency Department (ED). And reperfusion injury is one of the fetal complications after vascular reconstruction. The authors present a case which was able to save patient's life by rapid vessel ligation at bedside to prevent severe reperfusion injury. A 43-year-old male patient with no pre-existing medical conditions was transported by helicopter to Level I trauma center from incident scene. Initial result of extended focused assessment with sonography for trauma (eFAST) was negative. The trauma series X-rays at the trauma bay of ED showed a multiple contiguous rib fractures with hemothorax and his pelvic radiograph revealed a complex pelvic trauma of an Anterior Posterior Compression (APC) Type II. Lower extremity computed tomography showed a discontinuity in common femoral artery at the fracture site and no distal run off. Surgical finding revealed a complete rupture of common femoral artery and vein around the fracture site. But due to the age aspect of the patient, the operating team decided a vascular repair rather than amputation even if the anticipated reperfusion time was 7 hours from the onset of trauma. Only two hours after the reperfusion, the patient was in a state of shock when his arterial blood gas analysis (ABGA) showed a drop of pH from 7.32 to 7.18. An imminent bedside procedure of aseptic opening the surgical site and clamping the anastomosis site was taken place rather than undergoing a surgery of amputation because of ultimately unstable vital sign. The authors would like to emphasize the importance of rapid decision making and prompt vessel ligation which supply blood flow to the ischemic limb to increase the survival rate in case of profound reperfusion injury.

Hydrogeological Stability Study on the Underground Oil Storage Caverns by Numerical Modeling (수치모델링을 이용한 지하원유비축시설의 수리지질학적 안정성 연구)

  • 김경수;정지곤
    • The Journal of Engineering Geology
    • /
    • v.12 no.1
    • /
    • pp.35-51
    • /
    • 2002
  • This study aims to establish the methodology for design of an optimum water curtain system of the unlined underground oil storage cavern satisfying the requirements of hydrodynamic performance in a volcanic terrain of the south coastal area. For the optimum water curtain system in the storage facility, the general characteristics of groundwater flow system in the site are quantitatively described, i.e. distribution of hydraulic gradients, groundwater inflow rate into the storage caverns, and hydrogeologic influence area of the cavern. In this study, numerical models such as MODFLOW, FracMan/MAFIC and CONNECTFLOW are used for calculating the hydrogeological stability parameters. The design of a horizontal water curtain system requires considering the distance between water curtain and storage cavern, spacing of the water curtain boreholes, and injection pressure. From the numerical simulations at different scales, the optimum water curtain systems satisfying the containment criteria are obtained. The inflow rates into storage caverns estimated by a continuum model ranged from about 120 m$^3$/day during the operation stage to 130~140m$^3$/day during the construction stage, whereas the inflow rates by a fracture network model are 80~175m$^3$/day. The excavation works in the site will generate the excessive decline of groundwater level in a main fracture zone adjacent to the cavern. Therefore, the vertical water curtain system is necessary for sustaining the safe groundwater level in the fracture zone.

Effect of Hydrogen Sulfide Removal by Biofilter Seeded with Pseudomonas putida B2 (Pseudomonas putida B2가 접종된 Biofilter의 황화수소제거 효과)

  • Yoon, Ji-Yong;Lee, Soo-Choul;Kwon, Il;Sung, Chang-Keun
    • KSBB Journal
    • /
    • v.16 no.3
    • /
    • pp.286-289
    • /
    • 2001
  • A beterotrophic Pseudomonas putida B2 was used to treat of hydrogen sulfide containing gas. The experimental approach involved operating two indentical bench-scale biofilters with media consisting of a mixture of peatmoss, perlite and granular activated carbon(GAC). One column was seeded with Pseudomonas putida B2 and the other was left unseeded. The biofilter was operated for 16 days under EBRT for 20-40 sec, at a temperature of 25-30$^{\circ}C$ and a hydrogen sulfide concentration of 40-190 ppm. The biofilter inocculated with P.putida B2 exhibited high hydrogen sulfide removal efficiency, average of 95%, at a gydrogen sulfide concentration of 40-190 ppm (flow rate 3.6 L/min). However, at a shock loading of 190 ppm the biofiter showed a removal efficiency of 78.9% and the control only showed a removal efficiency of 31.6%. The critical load of this biofilter was 14.83 g/㎥hr, and the critical load of the control column was 4.93 g/㎥hr. These results suggest that P. putida B2 has the potential to be used as a $H_2S$ removal agent in a biofilter.

  • PDF

Solvent-free determination of BTEX in water using repetitive membrane extraction followed by GC-MS (반복적인 막 추출과 GC-MS를 이용한 물 중 BTEX의 분석)

  • Kim, He-Kap;Kim, Se-Young;Lee, Soo-Hyung
    • Analytical Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.352-359
    • /
    • 2011
  • An analytical method for solvent-free determination of benzene, toluene, ethylbenzene, and xylenes (BTEX) in water using repetitive membrane extractions coupled to cryofocusing and GC-MS was derived. BTEX compounds that permeated through a nonporous silicone membrane from the aqueous phase and evaporated into the acceptor phase were purged into a cryofocusing trap ($-100^{\circ}C$) with helium gas. The BTEX compounds, thus enriched in the trap, were thermally desorbed into a capillary column GC and detected using an MS. The flow rate of the donor phase (30 mL water) was set at 10 mL/min, and membrane extractions, accomplished by returning the water drained from the extraction module to the sample container, were repeated three times at $20{\pm}2^{\circ}C$. Although recoveries (%) were variable, from the highest for benzene (approximately 80%) to the lowest for ethylbenzene and xylenes (3.5-10%), the method showed satisfactory precision (RSD 2.2-10%) with good-linearity calibration curves ($r^2$ 0.9976-0.9997 in 1-100 ${\mu}g$/L range) for all of the compounds. The method detection limits (MDLs) ranged from 0.16 to 1.8 ${\mu}g$/L. The results showed the method's advantages such as short analysis time and overall simplicity without solvent compared to the conventional techniques.

Adsorption Characteristics of CO2 on Activated Carbons Treated with Alkali-metal Salts (알칼리금속염으로 처리된 활성탄에 대한 CO2의 흡착특성)

  • Ryu, Dong Kwan;Kim, Sung Hyun
    • Applied Chemistry for Engineering
    • /
    • v.9 no.2
    • /
    • pp.286-293
    • /
    • 1998
  • Two methods were used to enhance the adsorption capacity of activated carbons. One is to impregnate activated carbons with chemical compounds which have a good affinity for $CO_2$. The other is to activate by heat-treating after impregnation with KOH on activated carbons(AC). The chemical compounds impregnated on AC were alkali metal, alkaline earth metal, and transition metal chlorides. The adsorption capacity of $CO_2$ on AC impregnated with these metals was less than that of pure AC. These compounds have not the chemical affinity for $CO_2$ and obstruct the micropore of AC. The experiment of breakthrough for $CO_2$ on AC impregnated with KOH showed the increase of the adsorbed amount of $CO_2$ in influent gases containing water vapor. This means that KOH adsorbes $CO_2$ gas. However, the adsorbents impregnated with KOH had not the reproducibility because of the production of $K_2CO_3$ by the reaction of KOH with $CO_2$. The amount of $CO_2$ adsorbed on the heat-treated AC at $800^{\circ}C$ increased with the amount of impregnation. The adsorption capacity of $CO_2$ was the largest when the ratio of weight of KOH to AC equal to 4. The isosteric heat of adsorption was calculated by the equation of Clausius-Clapeyron form adsorption capacity data of $CO_2$ for the temperature change. In addition, the characteristics of $CO_2$ breakthrough curve were surveyed for the change of flow rate and concentration.

  • PDF

Experimental Study of Co-firing and Emission Characteristics Fueled by Sewage Sludge and Wood Pellet in Bubbling Fluidized Bed (기포 유동층 반응기를 이용한 하수슬러지 및 우드펠렛 혼소에 관한 연소 특성 분석 및 비교)

  • Lee, Youngjae;Kim, Jongmin;Kim, Donghee;Lee, Yongwoon
    • Clean Technology
    • /
    • v.23 no.1
    • /
    • pp.80-89
    • /
    • 2017
  • The bubbling fluidized bed (BFB) reactor with a diameter of 0.1 m and a height of 1.2 m was used for experimental study of co-firing and emission characteristics fueled by sewage sludge (SS) and wood pellet (WP). The facility consists of a fluidized bed reactor, feeding system, cyclone, condenser and gas analyzer, The mean particle diameter and minimum fluidization velocity are $460{\mu}m$ and $0.21ms^{-1}$ respectively. SS produced from Korea and WP from Canada were examined. The various mixing ratios of WP were 20, 50, and 80% based on HHV. The equivalence ratio of 1.65, reactor temperature of $800^{\circ}C$, air flow rate of $100Lmin^{-1}$, and fluidization number of 4 were fixed in the BFB experiment. In TGA, the range of combustion temperature of SS was wider than that of WP. It represents that the combustibility of WP is higher than that of SS. The BFB reactor temperature was maintained between 800 and $900^{\circ}C$. CO emission of SS was high because of lower combustibility. $NO_X$ and $SO_X$ formation of SS were higher than that of WP since high nitrogen and sulfur contents of SS. CO, $NO_X$, and $SO_X$ formation were suppressed as the mixing ratio of WP was increased. The slagging and fouling tendencies show high in all test conditions.