• Title/Summary/Keyword: Gas engine generation

Search Result 171, Processing Time 0.018 seconds

Development of Small-sized Gas Turbine Engine Control System for Power Generation (발전용 소형가스터빈엔진 제어시스템 개발)

  • Hong, Seong-Jin;Kim, Seung-Min;Yook, Sim-Kyun;Nam, Sam-Sik
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.4
    • /
    • pp.52-56
    • /
    • 2011
  • Small-sized gas turbine engine could be applied to various fields such as propulsion, power generation, machine driving, etc., and Doosan has been developing 5MW class gas turbine engine for power generation since 2005. To verify its design performance and operating characteristics, a gas turbine engine test facility was constructed, and control system was also established to satisfy rapid and reliable control performance. In this paper, the hardware specification and structure of control system for gas turbine engine are introduced, and test result for starting characteristics analysis and loading is also presented.

Performance Characteristics of a 10 kW Gas Engine for Generation Package (발전용 10kW급 천연가스엔진의 성능특성)

  • 이영재;표영덕;김강출;권용호;오시덕
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.8
    • /
    • pp.697-703
    • /
    • 2003
  • Cogeneration is the simultaneous generation of heat and electricity in a single unit, and is a highly energy-efficient technology compared to the independent generation of both products. Therefore, cogeneration has been widely introduced in many countries for use in industrial, commercial and residential applications. However, there have been few models with an output of less than 100 kilowatt. In the present study, a spark ignited gas engine with electric generation output of 10 kilowatts was developed for micro cogeneration package. The gas engine shows 26.7% of electric generation efficiency, NOx emission less than 10 ppm at 13% oxygen, 82 dB of Noise level, and about 3 seconds of switching time from idling to nominal power.

Operation Characteristics of Gas Engine Generator System using Coal Syngas (석탄 합성가스를 사용한 가스엔진 발전시스템 운전 특성)

  • Chung, Seok-Woo;Kim, Mun-Hyun;Lee, Seung-Jong;Yun, Yong-Seung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.800-803
    • /
    • 2007
  • Gasification has been regarded as a core technology in dealing with environmental pollutants and in obtaining higher efficiency for power generation. Among several ways in utilizing produced syngas from gasification, power generation would be the most prominent application. Syngas from coal was applied to the readily available LPG engine from automobiles. Main purpose was to identify the combustion characteristics in the modified gas engine when using syngas of low heating value and to test the modification optionsin the LPG gas engine. Gas engine rpm and the corresponding flue gas composition were measured for each syngas input condition. Results showed that even with syngas at the heating value of $1300{\sim}1800$ kcal/$Nm^3$ corresponding to the $6{\sim}7%$ of LPG heating value, gas engine operated successfully only with the problems of high CO and oxygen concentrations in the flue gas.

  • PDF

Performance Characteristics of a 10kW Gas Engine for Generation Package

  • Lee Young-Jae;Pyo Young-Dug;Kim Gang-Chul;Kwon Yong-Ho;Oh Si-Deok
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.3
    • /
    • pp.141-147
    • /
    • 2004
  • Cogeneration has been widely introduced in many countries for use m industrial, commercial and residential applications. However, there have been few models with an output of less than 100kW. In the present study, a spark ignited gas engine with electric generation output of 10kW was developed for micro cogeneration package. Developed gas engine achieved following performance characteristics such as $26.7\%$ of electric generation efficiency, NOx emission less than 10 ppm at $13\%$ oxygen, 82 dB of noise level, and about 3 seconds of switching time from idling to nominal power.

Testing a Commercial Gas Engine using Synthetic Biogas (합성 바이오가스를 이용한 상용 가스엔진 발전기의 구동 특성)

  • Shim, Jae-Hoon;Hong, Seong-Gu;Kwun, Soon-Kuk
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.592-597
    • /
    • 2005
  • Biogas is widely accepted as one of renewable energy. Raw biogas can be used in internal combustion engines either spark ignition or diesel engines. Since the gas has relatively low calorific values, engine power also is lower than rated power values. Modified engines or biogas-specific engines have been utilized in order to increase efficiency. Recently, gas engine/generators are provided for various purposes. They are mostly for LPG or natural gas. When biogas is fueled to the gas engines, de-rating is inevitable due to its lower calorific values. Meanwhile, massively produced commercial gas engines are more competitive in terms of initial investment for engines, compared to biogas-specific engines. Then, the characteristics of the commercial engine and power generation should be understood for better operation. A 5kW gas engine/generator(natural gas) was tested for determining an allowable maximum concentration of $CO_2$ in synthetic biogas, with respect to engine stating, power generation. Experimental results indicated that about 65% of methane concentration is required to start the gas engine. At this condition, the power generated was about 3 kW. It is about 60% of the nominal power, which is similar to the ratio of calorific values.

  • PDF

An Experimental Study on the Operation of a Power Generation Engine with Syngas from RPF (폐기물 열분해 합성가스를 이용한 발전용 엔진구동에 대한 실험적 연구)

  • Jeong, Hyo-Jae;Lee, Jeong-Woo;Lee, Jae-Wook;Moon, Ji-Hong;Choi, In-Soo;Park, Sang-Shin;Hwang, Jung-Ho;Yu, Tae-U;Lee, Uen-Do
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.3
    • /
    • pp.48-56
    • /
    • 2010
  • Performances of power generation engine were investigated with syngas from RPF. A stoker type, multi-staged pyrolysis-gasification system, was employed for syngas generation and the syngas was refined with the sequential cleaning processes composed of a gas cooler, a bag filter and a wet scrubber. 20 kWe commercial syngas power generation engine was adopted to burn the cleaned syngas which is mainly composed of hydrogen, carbon monoxide, carbon dioxide and methane. The performance of the engine was tested with various syngas compositions and the results were compared to LNG case. Electric power output, exhaust gas temperature, and emission characteristics were measured, and the efficiency of engine generation was investigated as a function of load of power generation.

5MW Class Gas Turbine Engine Test Cell (5MW급 발전용 가스터빈 엔진 성능시험 설비)

  • Nam, Sam-Sik;Song, Ju-Young;Kim, Sung-Hyun;Lee, Ki-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.339-342
    • /
    • 2010
  • Doosan Heavy Industries & Construction Co., Ltd. constructed a gas turbine engine test cell to verify operating characteristics and design parameters of 5MW class gas turbine engine for power generation under developing. Engine test cell was designed to satisfy critical requirements to scrutinize all performance parameters of the engine with safe and reliability in accordance with design specification. As the test cell developed can effectively reproduce engine operation conditions covering from start-up to maximum power condition, it can be utilized to make a continuing design improvement of the engine based on practical test data at full stretch. Moreover, it is expected to be serviceable to develop derivative engines and be utilized to put them into serial production and contribute to a competitiveness reenforcement as a gas turbine engine manufacturer.

  • PDF

A Study on the Reduction of $NO_x$ Emission from Dual Fuel Engine for Co-generation System (열병합발적용 Dual Fuel Engine의 질소산화물 배출저감에 관한 연구)

  • 정일래;김용술;심용식
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.7 no.1
    • /
    • pp.31-40
    • /
    • 1991
  • This study shows the correlation between $NO_x$ emission in the exhaust gas and various operation factors of dual fuel engine for Co-generation system. General tendency was shown that the thermal efficiency was lowered by the change of operation factors. However these were not confirmed on this experiment. Increasing T4 temperature (exhaust gas temperature at turbo-charger inlet) reduces $NO_x$ emission rate. The higher T4 temperature requires lower excess air as the excess air ratio is controlled by T4 temperature on gas mode operation. Another tendency was that $NO_x$ emission rate is reduced in case of increasing boost air temperature, quantity of pilot oil or bypassing flue gas through the exhaust gas boiler. The diameter of the fuel injection nozzle was changed smaller than design value and the injection timing was readjusted. Thus $NO_x$ emission rate could be reduced as retarding injection timing and changing hole diameter of fuel injection nozzle, however maxium engine out-put was decreased by changing fuel nozzle on the diesel mode operation.

  • PDF

A Study on the Safety Code Development of Gas Engine Micro Combined Heat and Power System (소형 가스엔진 열병합 발전시스템 안전기준 개발)

  • Kwon, Jun-Yeop;Kim, Min-Woo;Lee, Jung-Woon
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.4
    • /
    • pp.27-35
    • /
    • 2021
  • Recently, as a solution to the sharp drop in "power reserve ratio", it is being converted to a microgrid that enables bi-directional transmission and distribution. A microgrid is composed of a small-scale distributed power supply and a load. As a representative technology of distributed power generation, there is a Micro Combined Heat and Power system applied to homes and buildings. In this study, a safety standard was developed by dividing the power generation system, cooling system, lubrication system, and exhaust system to derive safety standards for a small gas engine power generation system with a gas consumption less than 232.6kW (200,000 kcal/h). In the case of the power generation system, a filter was installed and the system was stopped by detecting gas leakage and abnormalities in engine speed or output and the cooling system is stipulated to stop the system in case of insufficient cooling water or overheating. The lubrication system monitors the pressure and temperature of the lubricating oil and stops the system when an abnormality occurs, and the exhaust gas emission concentration regulation value was specified in accordance with domestic and foreign standards. Through the results of this study, it is judged that the safety of the gas engine power generation system can be improved and it can contribute to the commercialization of products.

Design and Thermodynamic Analysis of Hybrid Tri-generation Gas Engine-Organic Rankine Cycle (하이브리드 Tri-generation 가스엔진-유기랭킨사이클 시스템의 설계 및 열역학적 해석)

  • Sung, Taehong;Yun, Eunkoo;kim, Hyun Dong;Choi, Jeong Hwan;Chae, Jung Min;Cho, Young Ah;Kim, Kyung Chun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.1
    • /
    • pp.79-87
    • /
    • 2015
  • In a gas engine, the exhaust and the engine cooling water are generated. The engine cooling water temperature is $100^{\circ}C$ and the exhaust temperature is $500^{\circ}C$. The amount of heat of engine cooling water is 43 kW and the amount of heat of exhaust is 21 kW. Eight different hybrid organic Rankine cycle (ORC) system configurations which considering different amount and temperature of waste heat are proposed for two gas engine tri-generation system and are thermodynamically analyzed. Simple system which concentrating two different waste heat on relatively low temperature engine cooling water shows highest thermal efficiency of 7.84% with pressure ratio of 3.67 and shaft power of 5.17 kW.