• Title/Summary/Keyword: Gas dynamics analysis

Search Result 353, Processing Time 0.029 seconds

A Theory of Hot Gas Atomisation

  • Dunkley, J. J.;Fedorov, D.;Wolf, G.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.10-11
    • /
    • 2006
  • The use of hot gas in melt atomization has been widely reported, but little detailed experimental data on its precise effects and no satisfactory theory to explain them have been published. In this paper the authors present experimental data on the atomization of metals with gas at temperatures from ambient to 1000C, a semi-empirical equation relating particle size to gas temperature and flow rate, and an analysis of the gas dynamics of the atomization process that allows some insight into the process.

  • PDF

Basis Mode of Turbulent Flame in a Swirl-Stabilized Gas Turbine using LES and POD

  • Sung, Hong-Gye;Yang, Vigor
    • Journal of the Korean Society of Combustion
    • /
    • v.6 no.2
    • /
    • pp.29-35
    • /
    • 2001
  • Unsteady numerical study has been conducted on combustion dynamics of a lean-premixed swirl-stabilized gas turbine swirl injector. A three-dimensional computation method utilizing the message passing interface (MPI) parallel architecture, large eddy simulation(LES), and proper orthogonal decomposition (POD) technique was applied. The unsteady turbulent flame dynamics are simulated so that the turbulent flame structure can be characterized in detail. It was observed that some fuel lumps escape from the primary combustion zone, and move downstream and consequently produce hot spots. Those flame dynamics coincides with experimental data. In addition, basis modes of the unsteady turbulent flame are characterized using proper orthogonal decomposition (POD) analysis. The flame structure based on odd basis modes is apparently larger than that of even ones. The flame structure can be extracted from the summation of the basis modes and eigenvectors at any moment.

  • PDF

Numerical Analysis of Unsteady Thermo-Fluid Behavior for Launched Body using Chimera Mesh (키메라 격자를 이용한 발사체의 비정상 열유동해석)

  • Son, D.H.;Sohn, C.H.;Ha, J.H.
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.1013-1018
    • /
    • 2010
  • This paper presents a numerical evaluation of the launch dynamics and thermo-fluid phenomena for gas generator launch eject system. The existing gas dynamic model for launching eject body used ideal gas and adiabatic assumption with empirical energy loss model. In present study, a turbulent Navier-Stokes solver with CHIMERA mesh is employed to predict the detail unsteady thermo-fluid dynamics for the launched body. The calculation results show that proper grid number is necessary for good agreement with experimental data. The important effects for accurate prediction are a gap distance and thermal boundary condition on the wall. The computational results show good agreement with experiment data.

Effects of Thermal Dispersion Damage on the Pyrolysis and Reactor Relarionship Using Comutational Fluids Dynamics (전산유체역학을 활용한 폐플라스틱열분해 반응기의 기체분산판에 대한 유동해석)

  • Jongil, Han;SungSoo, Park;InJea, Kim;Kwangho, Na
    • New & Renewable Energy
    • /
    • v.19 no.4
    • /
    • pp.53-60
    • /
    • 2023
  • The Computational Fluid Dynamics (CFD) model is a method of studying the flow phenomenon of fluid using a computer and finding partial differential equations that dominate processes such as heat dispersion through numerical analysis. Through CFD, a lot of information about flow disorders such as speed, pressure, density, and concentration can be obtained, and it is used in various fields from energy and aircraft design to weather prediction and environmental modeling. The simulation used for fluid analysis in this study utilized Gexcon's (FLACS) CODE, such as Norway, through overseas journals, for the accuracy of the analysis results through many experiments. It was analyzed that a technology for treating two or more catalysts with physical properties under low-temperature atmospheric pressure conditions could not be found in the prior art. Therefore, it would be desirable to establish a continuous plan by reinforcing data that can prove the effectiveness of producing efficient synthetic oil (renewable oil) through the application that pyrolysis under low-temperature and atmospheric pressure conditions.

Performance Analysis in Direct Internal Reforming Type of Molten Carbonate Fuel Cell (DIR-MCFC) according to Operating Conditions (직접내부개질형 용융탄산염 연료전지(DIR-MCFC)의 운전 조건에 따른 성능 분석)

  • JUNG, KYU-SEOK;LEE, CHANG-WHAN
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.4
    • /
    • pp.363-371
    • /
    • 2022
  • In this study, the operation characteristics of the internal reforming type molten carbonate fuel cell (MCFC) were studied using computational fluid dynamics (CFD) analysis according to the steam to carbon ratio (S/C ratio), operating temperature, and gas utilization. From the simulation results, the distribution of gas composition due to the electrochemical reaction and the reforming reaction was predicted. The internal reforming type showed a lower temperature difference than the external reforming type MCFC. As the operating temperature decreased, less hydrogen was produced and the performance of the fuel cell also decreased. As the gas utilization rate decreased, more gas was injected into the same reaction area, and thus the performance of the fuel cell increased.

Gas dynamics and star formation in dwarf galaxies: the case of DDO 210

  • Oh, Se-Heon;Zheng, Yun;Wang, Jing
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.75.4-75.4
    • /
    • 2019
  • We present a quantitative analysis of the relationship between the gas dynamics and star formation history of DDO 210 which is an irregular dwarf galaxy in the local Universe. We perform profile analysis of an high-resolution neutral hydrogen (HI) data cube of the galaxy taken with the large Very Large Array (VLA) survey, LITTLE THINGS using newly developed algorithm based on a Bayesian Markov Chain Monte Carlo (MCMC) technique. The complex HI structure and kinematics of the galaxy are decomposed into multiple kinematic components in a quantitative way like 1) bulk motions which are most likely to follow the underlying circular rotation of the disk, 2) non-circular motions deviating from the bulk motions, and 3) kinematically cold and warm components with narrower and wider velocity dispersion. The decomposed kinematic components are then spatially correlated with the distribution of stellar populations obtained from the color-magnitude diagram (CMD) fitting method. The cold and warm gas components show negative and positive correlations between their velocity dispersions and the surface star formation rates of the populations with ages of < 40 Myr and 100~400 Myr, respectively. The cold gas is most likely to be associated with the young stellar populations. Then the stellar feedback of the young populations could influence the warm gas. The age difference between the populations which show the correlations indicates the time delay of the stellar feedback.

  • PDF

Flow analysis of fermenter, digester and dryer environmental in energy facilities (환경 에너지 시설 내 발효조, 소화기 및 건조기 유동해석)

  • Jeon, Yong-Han
    • Design & Manufacturing
    • /
    • v.13 no.4
    • /
    • pp.28-33
    • /
    • 2019
  • In this study, the flow analysis of fermentation tank, digester and dryer, which are the main equipment in environmental energy facilities, was carried out. Numerical analysis was carried out with the size of the actual plant, and 3D modeling program CATIA V5 R16, grid generation program Gambit, and general purpose flow analysis package ANSYS-FLUENT (v13) were used. Simulation results of the carrier gas flow analysis in the STD dryer using the computational fluid dynamics program showed that the carrier gas smoothly circulated between the shells of the dryer and the flow was uniformly distributed without stagnation or flow. It is also predicted that rotational flow due to shell rotation is active. The average flow velocity of carrier gas in the STD dryer was estimated to be about 0.196m / s, and the average temperature of the carrier gas was calculated to be 424K. Due to the relatively slow carrier gas velocity and high average temperature, the water content of the sludge can be effectively lowered.

Dynamic Modeling of PIG Flow through Curved Section in Natural Gas Pipelines (천연가스배관내 곡선 영역을 지나는 피그흐름의 동적모델링)

  • Nguyen, Tan Tien;Yoo, Hui-Ryong;Rho, Yong-Woo;Kim, Sang-Bong
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.247-252
    • /
    • 2001
  • In this paper, dynamic modeling and its analysis for the PIG flow through $90^{\circ}$ curved pipe with compressible and unsteady flow are studied. The PIG dynamics model is derived by using Lagrange equation under assumption that it passes through 3 different sections in the curved pipeline such that it moves into, inside and out of the curved section. The downstream and up stream flow dynamics including the curved sections are solved using MOC. The effectiveness of the derived mathematical models is estimated by simulation results for a low pressure natural gas pipeline including downward and upward curved sections. The simulation results show that the proposed model and solution can be used for estimating the PIG dynamics when we pig the pipeline including curved section.

  • PDF