• Title/Summary/Keyword: Gas diffusion layer

Search Result 265, Processing Time 0.034 seconds

Single Crystalline ${\beta}$-Na0.33V2O5 Nanowires Based Supercapacitor

  • Trang, Nguyen Thi Hong;Shakir, Imran;Kang, Dae-Joon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.587-587
    • /
    • 2012
  • Supercapacitors, which can deliver significant energy with high power density, have attracted a lot of attention due to their potential application in energy storage. Among various oxide materials, sodium vanadate has been recognized as one of the most promising electrode materials because of high electrical conductivity. In addition, larger layer spacing of ${\beta}$-Na0.33V2O5 compared to V2O5 makes easier Li+ insertion. Moreover, ${\beta}$-Na0.33V2O5 has a tunnel like structure along b axis with 3 kinds of V site allowing it to enhance the ion intercalation by introducing three different intercalation sites along the tunnel. The tunnel can act as a fast diffusion path for ion diffusion, which can improve the overall charge storage kinetics. In this study, high quality single crystalline sodium vanadate (${\beta}$-Na0.33V2O5) nanowires were grown directly on Pt coated $SiO_2$ substrate by a facile chemical solution deposition method without employing catalyst, surfactant or carrier gas. The results show that great enhancement in capacitance was observed compared with previous reports.

  • PDF

Numerical Modeling of Current Density and Water Behavior at a Designated Cross Section of the Gas Diffusion Layer in a Proton Exchange Membrane Fuel Cell (고분자전해질 연료전지의 동작압력에 대한 가스 확산층의 위치 별 전류밀도 및 수분거동에 대한 수치해석)

  • Kang, Sin-Jo;Kim, Young-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.161-170
    • /
    • 2012
  • There are many factors to consider when attempting to improve the efficiency of fuel cell operation, such as the operation temperature, humidity, stoichiometry, operation pressure, geometric features, etc. In this paper, the effects of the operation pressure were investigated to find the current density and water saturation behavior on a cross section designated by the design geometry. A two-dimensional geometric model was established with a gas channel that can provide $H_2$ to the anode and $O_2$ and water vapor to the cathode gas diffusion layer (GDL). The results from this numerical modeling revealed that higher operation pressures would produce a higher current density than lower ones, and the water saturation behavior was different at operation pressures of 2 atm and 3 atm in the cathode GDL. In particular, the water saturation ratios are higher directly below the collector than in other areas. In addition, this paper presents the dependence of the velocity behavior in the cathode on pressure changes, and the velocity fluctuations through the GDL are higher in the output area than in inlet area. This conclusion will be utilized to design more efficient fuel cell modeling of real fuel cell operation.

Numerical Study of Effects of Operating Conditions on the Performance of High Temperature PEMFC (작동 조건에 따른 고온 고분자 전해질 연료전지의 성능 변화에 대한 전산해석 연구)

  • Kim, Kyoung-Youn;Sohn, Young-Jun;Kim, Min-Jin;Yang, Tae-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.4
    • /
    • pp.283-289
    • /
    • 2010
  • A two-dimensional isothermal model has been employed for numerical simulations of a high temperature hydrogen fuel cell with proton exchange membrane. The model is validated with existing experimental data and used for examination on the effects of various operating conditions on the fuel cell performance. The present numerical results show that the cell performance increases with increasing exchange current density, ion conductivity of the membrane, inlet gas flow rate as well as operating pressure. Also, higher porosity of gas diffusion layer (GDL) results in higher cell performance due to enhancement of the diffusion through the GDL, where the cathode GDL porosity more influences on the performance as compared with the anode one.

Study of Kinetics for Removal H2S by Natural Manganese ore Sorbent (황화수소 제거를 위한 천연망간광석 탈황제의 반응 속도 연구)

  • Yoon, Yeo Il;Kim, Myung Wook;Kim, Sung Hyun
    • Clean Technology
    • /
    • v.7 no.3
    • /
    • pp.187-194
    • /
    • 2001
  • The desulfurization process which belongs to the gas refining part is the unit process that eliminates $H_2S$ and COS in the coal gas formed by the coal gasification part in the integrated gasification combined cycle(IGCC). In this study, natural manganese ores were selected as the raw material of the desulfurization sorbent due to economical efficiency. Initial rates for the reactions between $H_2S$ and desulfurization sorbent using natural manganese ores were determined in a temperature range of $400{\sim}800^{\circ}C$ using a thermobalance reactor. All reactions were first order with respect to $H_2S$ and were in accord with the Arrhenius equations. When sulfidation reaction was controlled by diffusion, the temperature dependence of the effective diffusivity was given by the Arrhenius equation. Activation energies and frequency factors were obtained from the product layer diffusion coefficient of various sorbents by plotting as Arrhenius equation form.

  • PDF

Preparation and Electrical Properties of Carbon Paper Using Chopped Carbon Fiber (탄소 단섬유를 이용한 탄소종이 제조 및 전기전도도 특성)

  • Lee, Ji-Han;Yoo, Yoon-Jong;Park, Soo-Jin
    • Applied Chemistry for Engineering
    • /
    • v.24 no.2
    • /
    • pp.121-125
    • /
    • 2013
  • In this work, we prepared the carbon paper from chopped carbon fibers using a gas diffusion matrix in polymer electrolyte membrane fuel cells by wet processing. The process of making carbon paper using wet processing is consisted of the three steps involving the dispersion of chopped carbon fibers, the preparation of the carbon fiber web, the impregnating of phenol resin. This work was focused on finding the optimal surfactant to make the carbon paper with 2D orientation of carbon fibers by investigating the dispersion state of carbon fibers in different dispersion solutions. Furthermore, the effect of phenol resin and carbon black contents on properties of electric conductivity was analyzed. As a result, it is confirmed that the carbon fiber was well dispersed when using sodium dodecyl sulfate as a surfactant, and the carbon paper with 8 wt% of phenol and 5 wt% of carbon black contents showed the most excellent electrical property.

Investigation of Gas Diffusion Layer Effects on the Freeze/Thaw Condition Durability in PEFCs (동결/해동 조건에서 기체확산층이 고분자전해질연료전지의 내구성에 미치는 영향에 관한 연구)

  • Lim, Soo-Jin;Park, Gu-Gon;Park, Jin-Soo;Sohn, Young-Jun;Yim, Sung-Dae;Yang, Tae-Hyun;Kim, Chang-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.4
    • /
    • pp.309-316
    • /
    • 2009
  • The effect of gas diffusion layers (GDLs) on the freeze/thaw condition durability in polymer electrolyte fuel cells (PEFCs) were investigated. For this purpose, three kinds of GDLs, such as, felt, paper and cloth types with different basic properties have been first prepared, then the changes in the properties and performance of cells was observed during the freeze/thaw cycles ranging from -30 to $70^{\circ}C$. The performance evaluations were conducted by using the single cells consisting of different GDLs. The performance degradation and the cell resistance increase could be directly correlated. The physical destruction of electrode was shown by SEM analysis. The mechanically supporting ability on the interface between the cell components can help enhancing the durability of PEFCs in the freeze/thaw condition.

A Study on Oxygen Diffusion Characteristics According to Changes in Flow Field Shape of Polymer Electrolyte Membrane Fuel Cell Metallic Bipolar Plate for Building (건물용 고분자 전해질 연료전지 금속분리판 유동장 형상 변화에 따른 산소 확산 특성에 대한 연구)

  • PARK, DONGHWAN;SOHN, YOUNG-JUN;CHOI, YOON-YOUNG;KIM, MINJIN;HONG, JONGSUP
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.4
    • /
    • pp.245-255
    • /
    • 2021
  • Various studies about metallic bipolar plates have been conducted to improve fuel cell performance through flow field design optimization. These research works have been mainly focused on fuel cells for vehicle, but not fuel cells for building. In order to reduce the price and volume of fuel cell stacks for building, it is necessary to apply a metallic flow field, In this study, for a metallic flow field applied to a fuel cell for building, the effect of a change in the flow field shape on the performance of a polymer electrolyte membrane fuel cell was confirmed using a model and experiments with a down-sizing single cell. As a result, the flow field using a metal foam outperforms the channel type flow field because it has higher internal differential pressure and higher reactants velocity in gas diffusion layer, resulting in higher water removal and higher oxygen concentration in the catalyst layer than the channel type flow field. This study is expected to contribute to providing basic data for selecting the optimal flow field for the full stack of polymer electrolyte membrane fuel cells for buildings.

Development and Evaluation of Bipolar Plates Coated with Noble Metals for Polymer Electrolyte Membrane Fuel Cells (Noble Metal이 코팅된 금속분리판 개발 및 성능 평가)

  • Seo, Hakyu;Han, In-Su;Jung, Jeehoon;Kim, Minsung;Shin, Hyungil;Hur, Taeuk;Cho, Sungbaek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.90.2-90.2
    • /
    • 2010
  • The coated metallic bipolar plates are getting attractive due to their good feasibility of mass production, low contact resistance, high electrical/thermal conductivity, low gas permeability and good mechanical strength comparing with graphite materials. Yet, metallic bipolar plates for polymer electrolyte membrane(PEM) fuel cells typically require coatings for corrosion protection. Other requirements for the corrosion protective coatings include low electrical contact resistance between metallic bipolar plate and gas diffusion layer, good mechanical robustness, low mechanical and fabrication cost. The authors have evaluated a number of protective coatings deposited on stainless steel substrate by electroplating. The coated metallic bipolar plates are investigated with an electrochemical polarization tests, salt dipping tests, adhesion tests for corrosion resistance and then the contact resistance was measured. The results showed that the selective samples electroplated with optimized method, satisfied the DOE target for corrosion resistance and contact resistance, and also were very stabilized in the typical fuel cell environments in the long-term.

  • PDF

MEMBRANES FOR GAS AND LIQUID SEPARATIONS

  • Golemme, Giovanni;Bove, Lucia;Clarizia, Gabriele;Muzzalupo, Rita;Ranieri, Giuseppe;Nam, Sang-Yong;Drioli, Enrico
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.27-30
    • /
    • 1999
  • Poly(phenylene oxide)s were used to prepare flat, integrally skinned self-supporthed asymmetric membranes by dry-wet phase separption. The intrinsic ideal gas selectivity of poly- (2,6-dimethy-1,4-phenylene oxide) (PMPO) was retained in the membranes, and improved by a coating with silicone rubber. Polymers of the same class were coated of UF supports with a silicon rubber gutter layer, yielding composite membranes with high flux but lower selectivity. The effect of th glutaraldehyde cross-linking of sodium alginate (SA) membranes on the mobility of water and ethanol has been studied with pfg nmr. Crosslinking reduces water self-diffusion, and does not seem to be stable on the timescale of weeks.

  • PDF

Heat transport characteristics by heat generation of electrochemical reactions in proton exchange membrane fuel cell (고분자전해질 연료전지에서 전기화학반응 열생성에 의한 열전달특성)

  • Cho, Son-Ah;Lee, Pil-Hyong;Han, Sang-Seok;Hwang, Sang-Soon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3377-3382
    • /
    • 2007
  • In proton exchange membrane fuel cell, the heat is generated at the catalyst layer as result of exothermic electrochemical reaction. This heat increases temperature of gas diffusion layer and membrane whose conductivity is very sensitive to humidity, function of temperature. So it is very important to analysis heat transfer through fuel cell to maintain temperature at specified range. In this paper numerical simulation was done including reversible, irreversible, ionic resistance, water formation loss to source term of energy equation. Results show that irreversible and water formation loss contributes mainly to energy source term and as current density increases, all of energy source terms become increased and Nusselt number is increased as results of more heat generation. Particularly irreversible loss is found to be predominant among the all energy source and water formation at cathode channel influences the temperature distribution of fuel cell greatly.

  • PDF