Preparation and Electrical Properties of Carbon Paper Using Chopped Carbon Fiber

탄소 단섬유를 이용한 탄소종이 제조 및 전기전도도 특성

  • Lee, Ji-Han (Department of Chemistry, Inha University) ;
  • Yoo, Yoon-Jong (Reaction and Separation Materials Research Center, Korea Institutes of Energy Research) ;
  • Park, Soo-Jin (Department of Chemistry, Inha University)
  • Published : 2013.04.10

Abstract

In this work, we prepared the carbon paper from chopped carbon fibers using a gas diffusion matrix in polymer electrolyte membrane fuel cells by wet processing. The process of making carbon paper using wet processing is consisted of the three steps involving the dispersion of chopped carbon fibers, the preparation of the carbon fiber web, the impregnating of phenol resin. This work was focused on finding the optimal surfactant to make the carbon paper with 2D orientation of carbon fibers by investigating the dispersion state of carbon fibers in different dispersion solutions. Furthermore, the effect of phenol resin and carbon black contents on properties of electric conductivity was analyzed. As a result, it is confirmed that the carbon fiber was well dispersed when using sodium dodecyl sulfate as a surfactant, and the carbon paper with 8 wt% of phenol and 5 wt% of carbon black contents showed the most excellent electrical property.

본 연구에서는 고분자 전해질 연료전지용 가스확산층의 지지체로 쓰이는 탄소종이를 탄소 단섬유를 이용하여 습식법으로 제조하였다. 습식법을 통한 탄소종이 제조는 크게 탄소 단섬유의 분산, 탄소종이 웹 제조, 페놀함침의 세 가지과정을 거치게 된다. 이번 연구에서는 몇 가지 분산제의 종류에 따른 탄소 단섬유의 분산도를 확인하고, 최적의 분산제를 찾아 탄소종이 제조 시 탄소섬유가 이차원적 배향이 잘 이루어지게 하였다. 추가적으로 페놀함침 시 첨가되는 페놀과 카본블랙 함량에 따른 전기전도도 특성을 분석하였다. 그 결과 sodium dodecyl sulfate를 분산제로 사용한 경우 탄소섬유의 분산이 가장 잘 되는 것을 확인하였으며, 페놀 및 카본블랙 함량에 따른 전도도 특성은 탄소섬유 대비페놀이 8 wt%, 카본블랙이 5 wt% 첨가된 경우 가장 우수하였다.

Keywords

References

  1. Eg&G Technical Services, Inc., Fuel Cell Handbook, U.S. Department of Energy, West Virginia (2004).
  2. J. P. Shim, C. S. Han, J. J. Sun, G. S, Park, J. J. Lee, and H. K. Lee, Trans. Kor. Hydrogen New Energy Soc., 23, 34 (2012). https://doi.org/10.7316/khnes.2012.23.1.034
  3. M. W. Reed and R. J. Brodd, Carbon, 3, 241 (1965). https://doi.org/10.1016/0008-6223(65)90057-6
  4. C. Song, Catal. Today, 77, 17 (2002). https://doi.org/10.1016/S0920-5861(02)00231-6
  5. S. litster and G. McLean, J. Power Sources, 130, 61 (2004). https://doi.org/10.1016/j.jpowsour.2003.12.055
  6. S. Park, J. W. Lee, and B. N. Popov, J. Power Sources, 163, 357 (2006). https://doi.org/10.1016/j.jpowsour.2006.09.020
  7. J. P. Feser, A. K. Prasad, and S. G. Advani, J. Power Sources, 162, 1226 (2006). https://doi.org/10.1016/j.jpowsour.2006.07.058
  8. G. G. Park, Y. J. Sohn, T. H. Yang, Y. G. Yoon, W. Y. Lee, and C. S. Kim, J. Power Sources, 131, 182 (2004). https://doi.org/10.1016/j.jpowsour.2003.12.037
  9. J. Ge, A. Jigier, and J. Liu, J. Power Sources, 159, 922 (2006). https://doi.org/10.1016/j.jpowsour.2005.11.069
  10. S. Escribano, J. F. Blachot, J. Etheve, A. Morin, and R. Mosdale, J. Power Sources, 156, 8 (2006). https://doi.org/10.1016/j.jpowsour.2005.08.013
  11. E. J. Ahn, G. G. Park, Y. G. Yoon, J. S. Park, W. Y. Lee, and C. S. Kim, J. Kor. Electrochem. Soc., 10, 306 (2007). https://doi.org/10.5229/JKES.2007.10.4.306
  12. S. M. Haile, Mater. Today, 5, 25 (2003).
  13. S. Gamburzev and A. J. Appleby, J. Power Sources, 107, 5 (2002). https://doi.org/10.1016/S0378-7753(01)00970-3
  14. E. Antolini, R. R. Passor, and E. A. Ticianelli, J. Power Sources, 109, 477 (2002). https://doi.org/10.1016/S0378-7753(02)00112-X
  15. R. B. Mathur, P. H. Mageshwari, T. L. Dhami, R. K. Sharma, and C. P. Sharma, J. Power Sources, 161, 790 (2006). https://doi.org/10.1016/j.jpowsour.2006.05.053
  16. S. K. Park, J. W. Lee, and B. N. Popov, Int. J. Hydrog. Energy, 37, 5850 (2012). https://doi.org/10.1016/j.ijhydene.2011.12.148
  17. J. Jang, C. H. Lee, K. H. Park, and S. K. Ryu, Kor. Chem. Eng. Res., 44, 602 (2006).
  18. X. Jin, D. A. Streett, C. A. Dunlap, and M. E. Lyn, Biol. Control, 46, 226 (2008). https://doi.org/10.1016/j.biocontrol.2008.03.008
  19. S. Samanta and P. Ghosh, Chem. Eng. Res. Des., 89, 2344 (2011). https://doi.org/10.1016/j.cherd.2011.04.006
  20. O. Owoyomi, I, Jide, M. S. Akanni, O. O. Soriyan, and M. K. Morakinyo, J. Appl. Sci., 5, 729 (2005). https://doi.org/10.3923/jas.2005.729.734
  21. C. Claro, J. Munoz, J. Fuente, M. R. Jimenez-Castellanos, and M. J. Lucero, Int. J. Pharm., 347, 45 (2008). https://doi.org/10.1016/j.ijpharm.2007.06.027
  22. M. R. Housaindokht and A. N. Pour, Solid State Sci., 14, 622 (2012). https://doi.org/10.1016/j.solidstatesciences.2012.01.016
  23. Z. Y. Xie, G. Y. Jin, M. Zhang, Z. A. Su, M. Y. Zhang, J. X. Chen, and Q. Z. Huang, Trans. Nonferrous Met. Soc. China, 20, 1412 (2010). https://doi.org/10.1016/S1003-6326(09)60313-7
  24. E. J. Ra, K. H. An, K. K. Kim, S. Y. Jeong, and Y. H. Lee, Chem. Phys. Lett., 413, 188 (2005). https://doi.org/10.1016/j.cplett.2005.07.061
  25. C. H. Liu, T. H. Ko, and Y. K. Liao, J. Power Sources, 178, 80 (2008). https://doi.org/10.1016/j.jpowsour.2007.11.103