• 제목/요약/키워드: Gas concentration impedance

검색결과 21건 처리시간 0.026초

Polymeric Precursor법에 의한 LaMeO3 (Me = Cr, Co)의 제조 및 NOx 가스 검지 특성 (Fabrication and NOx Gas Sensing Properties of LaMeO3 (Me = Cr, Co) by Polymeric Precursor Method)

  • 이영성;;송정환
    • 한국재료학회지
    • /
    • 제21권8호
    • /
    • pp.468-475
    • /
    • 2011
  • [ $LaMeO_3$ ](Me = Cr, Co) powders were prepared using the polymeric precursor method. The effects of the chelating agent and the polymeric additive on the synthesis of the $LaMeO_3$ perovskite were studied. The samples were synthesized using ethylene glycol (EG) as the solvent, acetyl acetone (AcAc) as the chelating agent, and polyvinylpyrrolidone (PVP) as the polymer additive. The thermal decomposition behavior of the precursor powder was characterized using a thermal analysis (TG-DTA). The crystallization and particle sizes of the $LaMeO_3$ powders were investigated via powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and particle size analyzer, respectively. The as-prepared precursor primarily has $LaMeO_3$ at the optimum condition, i.e. for a molar ratio of both metal-source (a : a) : EG (80a : 80a) : AcAc (8a) inclusive of 1 wt% PVP. When the as-prepared precursor was calcined at $700^{\circ}C$, only a single phase was observed to correspond with the orthorhombic structure of $LaCrO_3$ and the rhombohedral structure of $LaCoO_3$. A solid-electrolyte impedance-metric sensor device composed of $Li_{1.5}Al_{0.5}Ti_{1.5}(PO_4)_3$ as a transducer and $LaMeO_3$ as a receptor has been systematically investigated for the detection of NOx in the range of 20 to 250 ppm at $400^{\circ}C$. The sensor responses were able to divide the component between resistance and capacitance. The impedance-metric sensor for the NO showed higher sensitivity compared with $NO_2$. The responses of the impedance-metric sensor device showed dependence on each value of the NOx concentration.

고분자 전해질 연료전지 금속분리판 316L 스테인리스강의 부식거동 및 기체확산층(GDL)과의 계면접촉저항 측정 (Corrosion Behaviors of 316L Stainless Steel Bipolar Plate of PEMFC and Measurements of Interfacial Contact Resistance(ICR) between Gas Diffusion Layer(GDL) and Bipolar Plate)

  • 오인환;이재봉
    • Corrosion Science and Technology
    • /
    • 제9권3호
    • /
    • pp.129-136
    • /
    • 2010
  • The corrosion behaviors of 316L stainless steel were investigated in simulated anodic and cathodic environments for proton exchange membrane fuel cell (PEMFC) by using electrochemical measurement techniques. Interfacial contact resistance(ICR) between the stainless steel and gas diffusion layer(GDL) was also measured. The possibility of 316L was evaluated as a substitute material for the graphite bipolar plate of PEMFC. The value of ICR decreased with an increase in compaction stress(20 N/$cm^2$~220 N/$cm^2$) showing the higher values than the required value in PEMFC condition. Although 316L was spontaneously passivated in simulated cathodic environment, its passive state was unstable in simulated anodic environment. Potentiostatic and electrochemical impedance spectroscopy (EIS) measurement results showed that the corrosion resistance in cathodic condition was higher and more stable than that in anodic condition. Field emission scanning electron microscopy (FE-SEM), and inductively coupled plasma(ICP) were used to analyze the surface morphology and the metal ion concentration in electrolytes.

Hydrogen Plasma Characteristics for Photoresist Stripping Process in a Cylindrical Inductively Coupled Plasma

  • Yang, Seung-Kook;Cho, Jung Hee;Lee, Seong-Wook;Lee, Chang-Won;Park, Sang-Jong;Chae, Hee-Sun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제13권4호
    • /
    • pp.387-394
    • /
    • 2013
  • As the feature size of integrated circuits continues to decrease, the challenge of achieving an oxidation-free exposed layer after photoresist (PR) stripping is becoming a critical issue for semiconductor device fabrication. In this article, the hydrogen plasma characteristics in direct plasma and the PR stripping rate in remote plasma were studied using a $120{\Phi}$ cylindrical inductively coupled plasma source. E mode, H mode and E-H mode transitions were observed, which were defined by matching the $V_{rms}$ and total impedance. In addition, the dependence of the E-H mode transition on pressure was examined and the corresponding plasma instability regions were identified. The plasma density and electron temperature increased gradually under the same process conditions. In contrast, the PR stripping rate decreased with increasing proportion of $H_2$ gas in mixed $H_2/N_2$ plasma. The decrease in concentration of reactive radicals for the removal of PR with increasing $H_2$ gas flow rate suggests that NH radicals have a dominant effect as the main volatile product.

자유이물에 의한 GIS 내부 코로나특성 연구 (Corona Discharge In GIS Initiated by Free Conducting Particles)

  • 윤진열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 E
    • /
    • pp.1801-1803
    • /
    • 1997
  • The Gas Insulated Switchgear(GIS) has made it an indispensible part of power transmission network. In order that the GIS may have its high reliability, it is necessary to pay careful attention to its whole process e.g., designing, manufacturing, installation, and operation. The main hazard in GIS comes from free conducting particles, which can move and cause breakdown under the influence of the electric field. Although the concentration on protecting the GIS inner part against the free conducting particles is made, it is, actually, almost impossible to avoid the hazard from the particles throughly. In this paper, the corona discharge in GIS initiated by the free conducting particles was discribed through laboratorial experiment The magnitude of the corona discharge voltage was measured using current measuring method by the impedance. The purpose of this experiment is to get fundamental data which is essential to develop GIS diagnosis technology.

  • PDF

LaCrxCo1-xO3/Li1.3Al0.3Ti1.7(PO4)3의 적층구조를 가지는 가스센서 제조와 그의 NOx 검지특성 (Fabrication of Stack-Structured Gas Sensor of LaCrxCo1-xO3/Li1.3Al0.3Ti1.7(PO4)3 and Its NOx Sensing Properties)

  • 이영성;;송정환
    • 한국재료학회지
    • /
    • 제25권8호
    • /
    • pp.423-428
    • /
    • 2015
  • Impedancemetric $NO_x$ (NO and $NO_2$) gas sensors were designed with a stacked-layer structure and fabricated using $LaCr_xCo_{1-x}O_3$ (x = 0, 0.2, 0.5, 0.8 and 1) as the receptor material and $Li_{1.3}Al_{0.3}Ti_{1.7}(PO_4)_3$ plates as the solid-electrolyte transducer material. The $LaCr_xCo_{1-x}O_3$ layers were prepared with a polymeric precursor method that used ethylene glycol as the solvent, acetyl acetone as the chelating agent, and polyvinylpyrrolidone as the polymer additive. The effects of the Co concentration on the structural, morphological, and $NO_x$ sensing properties of the $LaCr_xCo_{1-x}O_3$ powders were investigated with powder X-ray diffraction, field emission scanning electron microscopy, and its response to 20~250 ppm of $NO_x$ at $400^{\circ}C$ (for 1 kHz and 0.5 V), respectively. When the as-prepared precursors were calcined at $700^{\circ}C$, only a single phase was detected, which corresponded to a perovskite-type structure. The XRD results showed that as the Co concentration of the $LaCr_xCo_{1-x}O_3$powders increased, the crystal structure was transformed from an orthorhombic phase to a rhombohedral phase. Moreover, the $LaCr_xCo_{1-x}O_3$ powders with $0{\leq}x<0.8$ had a rhombohedral symmetry. The size of the particles in the $LaCr_xCo_{1-x}O_3$powders increased from 0.1 to $0.5{\mu}m$ as the Co concentration increased. The sensing performance of the stack-structured $LaCr_xCo_{1-x}O_3/Li_{1.3}Al_{0.3}Ti_{1.7}(PO_4)_3$ sensors was found to divide the impedance component between the resistance and capacitance. The response of these sensors to NO gas was more sensitive than that to $NO_2$ gas. Compared to other impedancemetric sensors, the $LaCr_{0.8}Co_{0.2}O_3/Li_{1.3}Al_{0.3}Ti_{1.7}(PO_4)_3$ sensor exhibited good reversibility and reliable sensingresponse properties for $NO_x$ gases.

CH4 농도 변화가 저유전 SiOC(-H) 박막의 유전특성에 미치는 효과 (Effect of CH4 Concentration on the Dielectric Properties of SiOC(-H) Film Deposited by PECVD)

  • 신동희;김종훈;임대순;김찬배
    • 한국재료학회지
    • /
    • 제19권2호
    • /
    • pp.90-94
    • /
    • 2009
  • The development of low-k materials is essential for modern semiconductor processes to reduce the cross-talk, signal delay and capacitance between multiple layers. The effect of the $CH_4$ concentration on the formation of SiOC(-H) films and their dielectric characteristics were investigated. SiOC(-H) thin films were deposited on Si(100)/$SiO_2$/Ti/Pt substrates by plasma-enhanced chemical vapor deposition (PECVD) with $SiH_4$, $CO_2$ and $CH_4$ gas mixtures. After the deposition, the SiOC(-H) thin films were annealed in an Ar atmosphere using rapid thermal annealing (RTA) for 30min. The electrical properties of the SiOC(-H) films were then measured using an impedance analyzer. The dielectric constant decreased as the $CH_4$ concentration of low-k SiOC(-H) thin film increased. The decrease in the dielectric constant was explained in terms of the decrease of the ionic polarization due to the increase of the relative carbon content. The spectrum via Fourier transform infrared (FT-IR) spectroscopy showed a variety of bonding configurations, including Si-O-Si, H-Si-O, Si-$(CH_3)_2$, Si-$CH_3$ and $CH_x$ in the absorbance mode over the range from 650 to $4000\;cm^{-1}$. The results showed that dielectric properties with different $CH_4$ concentrations are closely related to the (Si-$CH_3$)/[(Si-$CH_3$)+(Si-O)] ratio.

연료중의 이산화탄소 불순물에 의한 고분자전해질연료전지의 성능변화 연구 (Effect of Carbon Dioxide in Fuel on the Performance of PEMFC)

  • 서중근;권준택;김준범
    • 전기화학회지
    • /
    • 제11권1호
    • /
    • pp.42-46
    • /
    • 2008
  • 연료전지는 수소를 직접 사용하는 것이 가장 효율이 높지만 가정이나 사무실에서는 수소 저장탱크를 사용하기보다는 도시가스(메탄가스)를 연료 source로 하여 수소를 생산하는 것이 유리하다. 연료전지에 사용하는 수소는 천연가스나 바이오가스, 탄화수소계열의 연료를 개질하여 생산하며 개질반응과정에서 필연적으로 여러 성분의 불순물이 포함되어 있다. CO, $CO_2$, $H_2S$, $NH_3$, $CH_4$등의 불순물이 포함된 수소연료가 PEM fuel cell에 공급되면 연료전지 성능에 영향을 준다고 보고되어 있다. 이러한 영향에는 전극 촉매의 피독에 의한 kinetic losses, 전해질막과 촉매이온층의 양이온 전도성 감소에 의한 ohmic losses 그리고 촉매층의 구조나 소수성 감소에 의한 mass transport losses가 있다. 개질기에서 생산된 수소연료는 약 73%의 $H_2$와 20% 이하의 $CO_2$, 5.8% 이하의 $N_2$, 2% 이하의 $CH_4$, 10ppm 이하의 CO로 최종 공급된다. 본 연구에서는 연료 중에 $CO_2$가 고분자전해질 연료전지 anode측 성능에 미치는 영향을 조사하였다. 실험은 연료전지에 공급되는 연료중에 $CO_2$농도를 10%, 20%, 30%로 전류와 전압의 성능곡선과 장시간(10시간)실험 그리고 임피던스를 측정하였다. 또한 가스크로마토그래피를 이용하여 순수한 수소와 $CO_2$가 함유된 수소의 혼합을 통해 나온 연료전지 inlet에서의 불순물의 농도를 검증하였다.

Humidity Calibration for a Pressure Gauge Using a Temperature-Stable Quartz Oscillator

  • Suzuki, Atsushi
    • Applied Science and Convergence Technology
    • /
    • 제25권6호
    • /
    • pp.124-127
    • /
    • 2016
  • Humidity calibration for a temperature-stable quartz oscillator (TSQO) was investigated to exclude the influences of relative humidity on the TSQO output in order to use the corresponding devices outdoors. The TSQO output is a voltage that is inversely proportional to the electric impedance of the quartz oscillator, which depends on the viscosity and density of the measured gas. The TSQO output was humidity calibrated using its humidity dependence, which was obtained by varying the relative humidity (RH) from 0 to 100 RH% while other conditions were kept constant. The humidity dependencies of the TSQO output were fit by a linear function. Subtracting the change in the TSQO output induced by the change in humidity, calculated with the function from the experimentally measured TSQO output for a range of 0-100RH%, eliminated the influence of humidity on the TSQO output. The humidity calibration succeeded in reducing the fluctuations of the TSQO output from 0.4-3% to 0.1-0.3% of the average values for a range of 0-100RH%, at constant temperatures. The necessary stability of the TSQO output for application in hydrogen sensors was below one-third of the change observed for a hydrogen leakage of 1 vol.% hydrogen concentration, corresponding to 0.33% of the change in each background. Therefore, the results in this study indicate that the present humidity calibration effectively suppresses the influence of humidity, for the TSQO output for use as an outdoor hydrogen sensor.

무가습 고온 PEFC용 이온성 액체 및 산이 함유된 복합막의 특성 (Characteristics of composite membranes containing ionic liquid and acid for anhydrous high temperature PEFCs)

  • 백지숙;박진수;박승희;양태현;박구곤;임성대;김창수;설용건
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.378-378
    • /
    • 2009
  • The ionic liquid-based sulfonated hydrocarbon composite membranes was prepared for use in anhydrous high temperature-polymer electrolyte fuel cells (HT-PEFCs). Ionic liquid behaves like water in the composite membranes under anhydrous condition. However the composite membranes show a low conductivity and high gas permeability as the content of ionic liquid increases due to its high viscosity and content of ionic liquid, respectively. Hence, in order to enhance the proton conductivity and to reduce the gas permeability of the composite membranes with low content of ionic liquids, the acid containing a common ion of ionic liquid was added to the composite membranes. The characterization of composite membranes was carried out using small-angle X-ray scattering (SAXS), thermogravimetric analyzer (TGA) and impedance spectroscopy. As a result, the composite membranes containing acid showed higher proton conductivity than those with no acid under the un-humidified condition due to a decrease in viscosity. In addition, the proton conductivity of composite membranes increased with increasing mole concentration of acid.

  • PDF

고분자 전해질막 연료전지의 기체확산층 내부 잔류수 모델링 및 성능변화해석 (Modeling Residual Water in the Gas Diffusion Layer of a Polymer Electrolyte Membrane Fuel Cell and Analyzing Performance Changes)

  • 장지원;김준범
    • 공업화학
    • /
    • 제35권1호
    • /
    • pp.16-22
    • /
    • 2024
  • 고분자전해질막 연료전지는 작동온도가 낮아, 다른 종류의 연료전지에 비해 빠른 시동과 응답 특성을 가진다는 장점이 있다. 시뮬레이션 연구는 비용과 시간 측면에서 이점이 있어 활발하게 연구되고 있다. 본 연구에서는 기존의 수식에 단위전지의 기체확산층에 잔류하는 물의 저항을 추가하여 실제 데이터와 모델데이터를 비교했다. 실험은 25 cm2 단위 전지로 진행됐으며, 1차 임피던스 측정, 활성화, 분극곡선 데이터 획득 후 정지 시간을 0, 10, 60분으로 가지는 샘플로 나눠 실험했다. 이는 기체확산층 내부의 잔류 중인 물이 증발할 시간을 0분, 10분, 60분 부여했다고 볼 수 있다. 휴식기간을 가지지 않는 경우, 같은 전위 및 같은 유량에서 성능 향상의 폭은 큰 차이를 보이지 않았으나, 휴식기간을 가진 막전극 접합체의 경우 임피던스 측정 시 성능 향상이 확인되었다. 저항 감소크기를 과전압으로 바꿔, 연료전지모델에 잔류수가 존재할 경우와 존재하지 않을 경우의 전압 차이를 비교했으며 그 결과로 농도손실이 주를 이루는 고전류밀도 영역의 오차율이 줄어든 것을 확인하였다.