• Title/Summary/Keyword: Gas activation

Search Result 476, Processing Time 0.026 seconds

Improved Sensitivity of an NO Gas Sensor by Chemical Activation of Electrospun Carbon Fibers

  • Kang, Seok-Chang;Im, Ji-Sun;Lee, Young-Seak
    • Carbon letters
    • /
    • v.12 no.1
    • /
    • pp.21-25
    • /
    • 2011
  • A novel electrode for an NO gas sensor was fabricated from electrospun polyacrylonitrile fibers by thermal treatment to obtain carbon fibers followed by chemical activation to enhance the activity of gas adsorption sites. The activation process improved the porous structure, increasing the specific surface area and allowing for efficient gas adsorption. The gas sensing ability and response time were improved by the increased surface area and micropore fraction. High performance gas sensing was then demonstrated by following a proposed mechanism based on the activation effects. Initially, the pore structure developed by activation significantly increased the amount of adsorbed gas, as shown by the high sensitivity of the gas sensor. Additionally, the increased micropore fraction enabled a rapid sensor response time due to improve the adsorption speed. Overall, the sensitivity for NO gas was improved approximately six-fold, and the response time was reduced by approximately 83% due to the effects of chemical activation.

Production of Activated Carbon from Bamboo by Gas Activation Method (기상 활성화법에 의한 대나무 활성탄 제조)

  • 조광주;박영철
    • Journal of Energy Engineering
    • /
    • v.13 no.2
    • /
    • pp.166-172
    • /
    • 2004
  • The activated carbon was produced from Sancheong bamboo by steam and carbon dioxide gas activation methods. The carbonization of raw material was conducted at 90$0^{\circ}C$ and gas activation reactions were conducted with respect to various conditions. -activation temperature 750-90$0^{\circ}C$, the flow rate of steam 0.5-2g-$H_2O$/g-char$.$hr, the flow rate of carbon dioxide 5-30$m\ell$-$CO_2$/g-char-min and activation time 1-5 hr. The prepared activated carbons were measured yield, the adsorption capacity of iodine and methylene blue, BET specific surface area and pore size distribution. The adsorption capacity of iodine (680.5-1526.1 mg/g) and methylene blue (18.3-221.5 mg/g) increased with creasing activation temperature and activation time. The adsorption capacity of iodine and methylene blue increased with the activation gas quantity in the range of 0.5-1.5g-$H_2O$/g-charㆍhr, 5-18.9$m\ell$-Co$_2$/g-charㆍmin. But those decreased over those range due to the pore shrinkage. The steam activation method was superior in efficiency to carbon dioxide activation method.

Effect of Carbon Black Activation on Physicomechanical Properties of Butadiene-nitrile Rubber

  • Shadrinov, N.V.;Kapitonov, E.A.;Sokolova, M.D.;Okhlopkova, A.A.;Shim, Ee Le;Cho, Jin-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.2891-2894
    • /
    • 2014
  • The effects of mechanical activation of carbon black on the processing and properties of butadiene nitrile rubber were studied. Mechanical activation of carbon black caused an improvement in the physical and mechanical properties of the butadiene-nitrile rubber, BNR-18AMN. The optimum activation time that would afford rubber with improved properties was established.

Encapsulation of Semiconductor Gas Sensors with Gas Barrier Films for USN Application

  • Lee, Hyung-Kun;Yang, Woo Seok;Choi, Nak-Jin;Moon, Seung Eon
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.713-718
    • /
    • 2012
  • Sensor nodes in ubiquitous sensor networks require autonomous replacement of deteriorated gas sensors with reserved sensors, which has led us to develop an encapsulation technique to avoid poisoning the reserved sensors and an autonomous activation technique to replace a deteriorated sensor with a reserved sensor. Encapsulations of $In_2O_3$ nanoparticles with poly(ethylene-co-vinyl alcohol) (EVOH) or polyvinylidene difluoride (PVDF) as gas barrier layers are reported. The EVOH or PVDF films are used for an encapsulation of $In_2O_3$ as a sensing material and are effective in blocking $In_2O_3$ from contacting formaldehyde (HCHO) gas. The activation process of $In_2O_3$ by removing the EVOH through heating is effective. However, the thermal decomposition of the PVDF affects the property of the $In_2O_3$ in terms of the gas reactivity. The response of the sensor to HCHO gas after removing the EVOH is 26%, which is not significantly different with the response of 28% in a reference sample that was not treated at all. We believe that the selection of gas barrier materials for the encapsulation and activation of $In_2O_3$ should be considered because of the ill effect the byproduct of thermal decomposition has on the sensing materials and other thermal properties of the barrier materials.

Application of CV Cycling to the Activation of the Polymer Electrolyte Membrane Fuel Cell (고분자 전해질막 연료전지의 활성화를 위한 CV 활성화법)

  • Cho, Ki-Yun;Jung, Ho-Young
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.445-449
    • /
    • 2012
  • The activation process of the membrane-electrode assembly (MEA) is important for the mass production of the polymer electrolyte membrane fuel cell. The conventional activation process for the MEA requires excessive time and hydrogen gas and it might become the barrier for the commercialization of the fuel cell. The conventional activation process is based on hydrolysis of ion conducting membrane. In the study, we suggest the cyclic voltammetry (CV) technique as an on-line activation process and the CV activation process consists of two steps : 1) the humidification of the polymer electrolyte membrane and the electrode with 100% RH humidified nitrogen ($N_{2}$) gas, and 2) the removal step of the oxide layer on the surface of the Pt catalyst with CV cycling. The cycling reduces the activation time of the MEA by 2.5 h and use of hydrogen gas by 1/4.

Deep learning neural networks to decide whether to operate the 174K Liquefied Natural Gas Carrier's Gas Combustion Unit

  • Sungrok Kim;Qianfeng Lin;Jooyoung Son
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.383-384
    • /
    • 2022
  • Gas Combustion Unit (GCU) onboard liquefied natural gas carriers handles boil-off to stabilize tank pressure. There are many factors for LNG cargo operators to take into consideration to determine whether to use GCU or not. Gas consumption of main engine and re-liquefied gas through the Partial Re-Liquefaction System (PRS) are good examples of these factors. Human gas operators have decided the operation so far. In this paper, some deep learning neural network models were developed to provide human gas operators with a decision support system. The models consider various factors specially into GCU operation. A deep learning model with Sigmoid activation functions in input layer and hidden layers made the best performance among eight different deep learning models.

  • PDF

Improvement of gas sensing properties of carbon nanofibers based on polyacrylonitrile and pitch by steam activation

  • Kim, Jeongsik;Kim, Hyung-Il;Yun, Jumi
    • Carbon letters
    • /
    • v.24
    • /
    • pp.36-40
    • /
    • 2017
  • Polyacrylonitrile/pitch nanofibers were prepared by electrospinning as a precursor for a gas sensor material. Pitch nanofibers were properly fabricated by incorporating polyacrylonitrile as an electrospinning supplement component. Polyacrylonitrile/pitch nanofibers were activated with steam at various temperatures followed by subsequent carbonization to make carbon nanofibers with a highly conductive graphitic structure. Steam activation was effective in facilitating gas adsorption onto the carbon nanofibers due to the increased surface area. The carbon nanofibers activated at $800^{\circ}C$ had a larger surface area and a lower micro pore fraction resulting in a higher variation in electrical resistance for improved CO gas sensing properties.

Induction of pro-inflammatory cytokines by 29-kDa FN-f via cGAS/STING pathway

  • Hwang, Hyun Sook;Lee, Mi Hyun;Choi, Min Ha;Kim, Hyun Ah
    • BMB Reports
    • /
    • v.52 no.5
    • /
    • pp.336-341
    • /
    • 2019
  • The cGAS-STING pathway plays an important role in pathogen-induced activation of the innate immune response. The 29-kDa amino-terminal fibronectin fragment (29-kDa FN-f) found predominantly in the synovial fluid of osteoarthritis (OA) patients increases the expression of catabolic factors via the toll-like receptor-2 (TLR-2) signaling pathway. In this study, we investigated whether 29-kDa FN-f induces inflammatory responses via the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon gene (STING) pathway in human primary chondrocytes. The levels of cGAS and STING were elevated in OA cartilage compared with normal cartilage. Long-term treatment of chondrocytes with 29-kDa FN-f activated the cGAS/STING pathway together with the increased level of gamma-H2AX, a marker of DNA breaks. In addition, the expression of pro-inflammatory cytokines, including granulocyte-macrophage colony-stimulating factor (GM-CSF/CSF-2), granulocyte colony-stimulating factor (G-CSF/CSF-3), and type I interferon ($IFN-{\alpha}$), was increased more than 100-fold in 29-kDa FN-f-treated chondrocytes. However, knockdown of cGAS and STING suppressed 29-kDa FN-f-induced expression of GM-CSF, G-CSF, and $IFN-{\alpha}$ together with the decreased activation of TANK-binding kinase 1 (TBK1), interferon regulatory factor 3 (IRF3), and inhibitor protein ${\kappa}B{\alpha}$ ($I{\kappa}B{\alpha}$). Furthermore, NOD2 or TLR-2 knockdown suppressed the expression of GM-CSF, G-CSF, and $IFN-{\alpha}$ as well as decreased the activation of the cGAS/STING pathway in 29-kDa FN-f-treated chondrocytes. These data demonstrate that the cGAS/STING/TBK1/IRF3 pathway plays a critical role in 29-kDa FN-f-induced expression of pro-inflammatory cytokines.

A Study on Thermal Stability of Chlorinated Polyethylene (함염소 폴리에틸렌의 열안정성에 관한 연구)

  • Seul S. D.;Lee N. W.
    • Journal of the Korean Institute of Gas
    • /
    • v.1 no.1
    • /
    • pp.120-126
    • /
    • 1997
  • The thermal decomposition of low density polyethylene(LDPE) and $25\%{\~}48\%$ chlorinated polyethylene(CPE) were studied using a dynamic thermogravimetry in the stream of nitrogen gas with 20ml/min. The mathematic method, differential (Friedman) and Integral (Ozawa) method were used to obtain value of activation energy of decomposition energy on the reaction. The activation energies evaluated by the above methods agree with each other very well. The maximum average activation energy calculated was 71.71kcal/mol. The thermal decomposition of LDPE and CPE were considered to be carried out by main chain scission and the thermogravimetric trace curve agree with the theoretical equation.

  • PDF

Formation of SiC layer on Single Crystal Si Using Hot-Filament Reactor

  • Kim, Hong-Suk;Park, In-Hoon;Eun, Kwang-Yong;Baik, Young-Joon
    • The Korean Journal of Ceramics
    • /
    • v.4 no.1
    • /
    • pp.25-27
    • /
    • 1998
  • The effect of gas activation on the formation of SiC layer on Si substrate using methane as a carbon source was investigated. Tungsten filaments, heated above 200$0^{\circ}C$, were used to activate the methane-hydrogen mixed gas. The dissociation of methane gas by the heated filament was enough to form a SiC layer successfully, which was very difficult without any activation. The SiC layer formed on the Si substrate was crystalline and nearly epitaxial as measured by X-ray diffraction. The SiC layer formed on the Si substrate was crystalline and nearly epitaxial as measured by X-ray diffraction. The stoichiometry was also close to 1:1. However, the characteristic of the SiC layer was dependent on the heat-treatment condition. The general behavior of the layer growth with the variables was discussed.

  • PDF