• Title/Summary/Keyword: Gas Volume

Search Result 1,559, Processing Time 0.025 seconds

A Numerical Analysis on a Dependence of Hydrogen Diaphragm Compressor Performance on Hydraulic Oil Conditions (오일부 운전조건 변화에 따른 수소용 다이어프램 압축기의 성능예측에 대한 수치해석)

  • Park, Hyun-Woo;Shin, Young-Il;Lee, Young-Jun;Song, Ju-Hun;Chang, Young-June;Jeon, Chung-Hwan
    • Journal of Hydrogen and New Energy
    • /
    • v.20 no.6
    • /
    • pp.471-478
    • /
    • 2009
  • The specific some types of compressors are appropriate for a use in hydrogen gas station. Metal diaphragm type of hydrogen compressor is one of them, which can satisfy the critical requirements of maintaining gas purity and producing high pressure over 850 bar. The objective of this study is to investigate an characteristics of compression through two-way Fluid-Structure-Interaction (FSI) analysis as bulk modulus and initial volume of oil independently varies. Deflection of diaphragm, oil density, gas and oil pressure were analyzed during a certain period of compression process. According to the analysis results, bulk modulus and initial volume remarkably affected deflection of diaphragm, oil density, gas and oil pressure. The highest gas pressure were attained with the highest bulk modulus of $7e^9\;N/m^2$ and the lowest initial oil volume of 80 cc.

Characteristics of SMD and Volume Flux of Two-phase Jet Injected into Cross-flow with Various Gas-liquid Ratio and Reynolds Number (횡단 유동장의 기액비 및 레이놀즈수 변화에 따른 외부혼합형 이상유체 제트의 액적크기 및 체적유속 특성)

  • Kim, Jong-Hyun;Lee, Bong-Soo;Koo, Ja-Ye
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.75-81
    • /
    • 2009
  • A study was performed to investigate the characteristics of two-phase jet injected into subsonic cross-flow using the external mixed gas blast two-phase nozzle. The shadowgraph method was adopted for the cross-flow jet visualization and PDPA system was used to measure droplet size, velocity, and volume flux. The atomization of two-phase jet is initially determined according to gas to liquid mass flow-rate ratio and the Reynolds number of cross-flows. The highest penetration trajectories of two-phase jet injected into cross-flow are governed by the momentum ratio at subsonic cross-flow. As GLR of two-phase jet injected into cross-flow increases, the droplet size decreases and the distribution area of volume flux increases. The distribution of volume flux that influenced by the counter vortex pair at the downstream of cross-flow is symmetric in shape of horseshoe.

Case Study on Seepage Analysis and Countermeasure Against the Seepage Flow of In-ground LNG Storage Tank (LNG 지하저장탱크의 침투해석 및 용수 대책공법에 대한 사례분석)

  • 신은철;오영인;이상혁
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.65-72
    • /
    • 2001
  • Since Pyoungtaek thermal power plant began using natural gas in 1986, the annual using volume has rapidly increased and reached 12.7 million tons in 1999. When the natural gas is cooled to a temperature of approximately -162$^{\circ}$C at atmospheric pressure, it condenses to a liquid called liquefied natural gas(LNG). LNG has a special characters such as odorless, colorless, non-corrosive, and non-toxic. So, LNG storage tank, tanker ship, transfer pipelines are required the special storage and transportation systems and technology. The presently operating LNG terminals are Pyongtaek and Inchon terminals. A total of 19 above-ground LNG storage tanks(100 thousand ㎘ grade) are currently in operation with a sendout capacity of 4,360tons/hour. To meet the growing domestic demand of LNG supply, the Inchon receiving terminal is expanding(six in-ground tank) and constructing a third LNG terminal at Tongyong. In this paper, case study on seepage analysis and countermeasure against increasing the seepage volume of in-ground LNG storage tank excavation work is reported. The results of an additional seepage analysis are presented to verify the design seepage volume of assumption section and seepage volume after curtain-grouting in the slurry wall.

  • PDF

A Study on the Diesel Spray Evaporation and Combustion Characteristics in Constant Volume Chamber (정적연소실내의 디젤분무증발과 연소특성에 관한 연구)

  • Kim, S.H.;Kim, S.J.;Lee, M.B.;Kim, E.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.6
    • /
    • pp.102-109
    • /
    • 1994
  • As a fundamental study to apply high pressure injection system to direct injection diesel engine, fuel injection system and constant volume combustion chamber were made and the behaviors of evaporating spray with the variation of injection pressure and the ambient gas temperature were observed by using high speed camera, and the combusion characteristics with the variation of injection pressure and A/F ratio were analyzed. As injection pressure increases, spray tip penetration and spray angle increase and, as a results spray volume increases. This helps an uniform mixing of fuel and air. Spray liquid core length decreases as ambient gas temperature increases, while it decreases as injection pressure increases but the effect of ambient gas temperature is dorminant. As injection pressure increases, ignition delay is shortened and combustion rate being raised, maximum heat release rate increases. It become clear that High injection pressure has high level of potential to improve the performance of DI-diesel engine.

  • PDF

A Study on Sorbent Application of Hard-Shelled Mussel Waste Shell on the Medium/small Scale Waste Incinerator and Flue Gas Desulfurization Process (중.소형 폐기물소각로 및 배연탈황공정용 홍합(Hard-Shelled Mussel) 패각페기물 Sorbent 적용에 관한 연구)

  • 정종현
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.1
    • /
    • pp.34-42
    • /
    • 2003
  • The objective of this study is to investigate the waste recycling possibility, practicability, economic efficiency and acid gas sorbent use of the hard-shelled mussel. This study is to investigate the hydration/calcination reaction and fixed bed reactor. The physical-chemical characteristics of the hard-shelled mussel were analyzed by ICP SEM-EDX, BET and pore volume. Thus, the results could be summarized as follows; Hard-shelled mussel can be used as iron-manufacture and chemical sorbents considering more than 53.7% of the mussel is lime content. The SO$_2$removal efficiency of the hard-shelled mussel after calcined hydration increased thirty times as a result of the higher pore size, specific surface area and pore volume. Also, the CaO content, pore volume, pore size distribution and specific surface area greatly influenced the SO$_2$ and NOx removal reactivity. The optimum particle diameter average of hard-shelled mussel was $\pm$100 mesh, which was applied to the sorbent on the medium/small scale waste incinerator and flue gas desulfurization processes.

A Study on Process Design of Hot Oil Flushing System Using Oil-Nitrogen Gas Mixing Fluid (오일-질소가스 혼합유체를 이용한 고온 오일플러싱 시스템 공정설계에 관한 연구)

  • Lee, Yoon-Ho;Choi, Bu-Hong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.5
    • /
    • pp.541-548
    • /
    • 2017
  • A theoretical study on gas-liquid two-phase flow flushing systemnitrogen gas to the oil used for existing flushing equipment was conducted on the basis of ISO code so as to improve performance of existing high-temperature oil flushing equipment used in ocean plant facility drying field. For study, we analyzed process simulation results mixed fluid mixing ratio, temperature, Reynolds number and liquid hold up affectcleaning performance after designing oil-nitrogen gas mixture flushing system process. As a result, as the volume flow rate of mixed fluid increases with the tube diameter the volume fraction of the gas phase constant, the liquid fraction difference value at the inlet and outlet of horizontal hydraulic piping increases. It was found that the phase distribution between oil and nitrogen gas bubbles varies depending on the position the pipe lengthdirection. This change in phase distribution is expected to have a significant impact on the clean performance of an oil-nitrogen gas mixture flushing system.

A Study on Correlation between A/F and ion signal in a Constant-Volume Chamber Using Spark-plug Ionization Probe Itself (정적챔버에서 스파크 플러그 이온프로브를 이용한 공연비와 이온신호와의 상관관계에 대한 연구)

  • Park, Jong-Il;Chun, Kwang-Min;Hahn, Jae-Won;Park, Chul-Woong
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.223-229
    • /
    • 2002
  • Spark plug ionization signal could be useful in an internal combustion engine as a feedback signal for combustion diagnostics such as misfire detection, knocking detection and lambda control, but the signal has high level of cyclic fluctuation in an internal combustion engine due to residual gas, pressure, temperature, mixture composition in the spark gap. Because of this reason it is very difficult to apply ion signal to commercial engine control. In this Study, a correlation between A/F and spark plug ionization signal was studied in a constant volume chamber. Constant volume chamber with gas phase fuel(Propane) has homogeneous fuel composition , no mixture flow, same pressure and temperature on each test. The results show that mean chemi-ion signal has the highest correlation with A/F and intial pressure change has on effect on the thermal-ion signal and not on chemi-ion signal.

  • PDF

A study on the Prediction of Explosion Risk for the Low Pressure Natural Gas Facilities with Different Explosion Conditions (저압 도시가스 사용설비의 누출 조건에 따른 폭발 위험 분위기 형성 범위 예측에 관한 연구)

  • Han, Sangil;Lee, Dongwook;Hwang, Kyu-Suk
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.3
    • /
    • pp.59-65
    • /
    • 2016
  • It is imperative to use suitable explosion proof equipments to prevent explosion in different gas facilities. There is no technical standard for the classification of hazardous areas though standard of explosion proof is regulated. In this study, we have adopted Industrial Standard KS to develop the methodology for the prediction of the explosion risk in the natural gas facility with low pressure using the important factors including hole size, hypothetical volume, validation of ventilation effectiveness. The applicability of the developed methodology was evaluated by the comparison with the data obtained from experiments of natural gas explosion.

Analysis and Development of Experimental Method of Charle's Law Applicable to School (학교 현장에 적용 가능한 '샤를의 법칙' 실험방법의 분석 및 개발)

  • Min, Jung-Sook;Kim, Sung-Hee;Jeong, Dae-Hong
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.2
    • /
    • pp.175-188
    • /
    • 2009
  • In this study, we developed an experimental method of the Charles' law applicable to school. Science textbooks and literatures on this principle were analyzed to extract factors utilized in organizing the experimental setup and method. A combined structure such as with a vial and a glass tube, the former of which is for deciding the total volume and the latter of which is for easy measurement of volume, was better in measurement of volume with temperature rather than a simple structure such as syringe. Use of graduated cylinder as a water bath to control the temperature showed advantage in cooling time than using other bath of larger volume such as a beaker. A liquid drop was used as a plug in the glass tube. This plug has little resistance with the glass wall when the gas volume changes. Water as a liquid drop in the glass tube had a significant effect in volume change of gas due to evaporation, especially in the beginning of the measurement. Glycerol showing negligible effect in volume change was used. This method took about one hour and produced a good linear relationship between the temperature and volume of gas with $R^2$ = 0.999 and absolute zero temperature = $-216.7\;{^{\circ}C}$. The Charles' law experiment developed in this study can be performed with appropriate adjustment of procedure considering the purpose of the curriculum of science and chemistry subject at each school level.

Analysis of Risk Assessment Factors for Gas leakage and Dispersion in Underground Power Plant (지하복합발전플랜트 내의 가스 누출 및 확산에 의한 위험성 평가 인자 분석)

  • Choi, Jinwook;Li, Longnan;Park, Jaeyong;Sung, Kunhyuk;Lee, Seonghyuk;Kim, Daejoong
    • Journal of ILASS-Korea
    • /
    • v.20 no.2
    • /
    • pp.101-106
    • /
    • 2015
  • Gas leakage and dispersion in the underground LNG power plant can lead to serious fire and explosion accident. In this study, computational fluid dynamics simulation was applied to model the dynamic process of gas leakage and dispersion phenomena in a closed space. To analyze the risk assessment factor, such as the flammable volume ratio, transient simulations were carried out for different scenarios. The simulation results visualized the gas distribution with time in the closed space. The flammable volume ratio was introduced for quantitative analysis the fire/explosion probability.