• Title/Summary/Keyword: Gas Valves

Search Result 181, Processing Time 0.026 seconds

A Test Design and Configuration for Turbopump and Gas Generator Coupled Test (터보펌프 가스발생기 연계시험에서의 시험영역 설정과 설비 설계)

  • Nam, Chang-Ho;Kim, Cheul-Woong;Kim, Seung-Han;Park, Soon-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.107-110
    • /
    • 2008
  • The test range for turbopump and gas generator coupled test was determined considering the engine system test area which cover the qualification and development. Based on the test range, we determined the required loss coefficient for the throttle valves and lines.

  • PDF

Investigation of In-Cylinder Flow Patterns in 4 Valve S. I. Engine by Using Single-Frame Particle Tracking Velocimetry

  • Lee, Ki-hyung;Lee, Chang-sik;Chon, Mun-soo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.108-116
    • /
    • 2001
  • The in-cylinder flow field of gasoline engine comprises unsteady compressible turbulent flows caused by the intake port, combustion chamber geometry. Thus, the quantitative analysis of the in-cylinder flow characteristics plays an important role in the improvement of engine performances and the reduction of exhaust emission. In order to obtain the quantitative analysis of the in-cylinder gas flows for a gasoline engine, the single-frame particle tracking velocimetry was developed, which is designed to measure 2-dimensional gas flow field. In this paper, influences of the swirl and tumble intensifying valves on the in-cylinder flow characteristics under the various intake flow conditions were investigated by using this PTV method. Based on the results of experiment, the generation process of swirl and tumble flow in a cylinder during intake stroke was clarified. Its effect on the tumble ratio at the end of compression stroke was also investigated.

  • PDF

Study of Lay-out Design Concept for Liquid Rocket Engine System (액체로켓엔진 시스템 Lay-out 설계 개념 연구)

  • Chung, Yong-hyun;Lee, Eun-Seok
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.4
    • /
    • pp.42-45
    • /
    • 2007
  • The process of Lay-out design and assembly for liquid rocket engine was presented and the Lay-out design for main components of liquid Rocket engine system was studied. Vertical direction is recommended in the case of turbopump's arrangement. If the length of pipe between gas-generator with turbopump's turbine is shorter, gas-generator is stable. The arrangements of main valves are recommended as near disposition to combustion chamber, because shut-down process time is shorter. Interference with launch vehicle and structural strength considering gimbal actuator's force and control performance is considered in the case of gimbal actuator's supporter design.

  • PDF

A Development of Gas Line Safety Management System by GIS (GIS를 이용한 가스관의 안전 관리시스템 개발)

  • 최병길;정영동;김영곤
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.1
    • /
    • pp.11-17
    • /
    • 2000
  • GIS is the system that has ability of integrating, managing, and analyzing the voluminous graphic and text data, which is adequate system to manage complex network of the underground utilities of urban area. A development of gas line safety management system is accomplished to construct a database of gas line network and topographic data, create safety managing model, and estimate openly its safety by GIS. This system is designed to evaluate easily the damaged facilities in case of gas line explosion by the establishment of the geographic output system. It is designed to trace and present efficiently closed valves and interrupted facilities of gas when gas line breakage occurs, and offer the information by which one can take quickly emergency. And also, it is constructed to prevent from accident occurring under construction work by showing underground utilities and states of work.

  • PDF

A study on Greenhouse gas Emission Characteristics of Conventional Passenger and Hybrid Electric Vehicles (승용 및 하이브리드 자동차 온실가스 배출특성 연구)

  • Lim, Yun Sung;Mun, Sun Hee;Chung, Taek Ho;Lee, Jong Tae;Dong, Jong In
    • Journal of ILASS-Korea
    • /
    • v.25 no.1
    • /
    • pp.34-39
    • /
    • 2020
  • Automotive manufacturers are applying technologies for greenhouse gas reduction such as vehicle weight reduction, engine downsizing, direct injection technology, variable valves and transmission performance improvement to achieve the targets for enhanced greenhouse gas and fuel consumption efficiency. In this paper, compared and analyzed greenhouse emissions according to engine capacity, engine displacement, curb weight and sales volume of hybrid and internal combustion engine passenger vehicles. Hybrid emit 32~39% less greenhouse gas than internal combustion engines through the combined mode test method. Hybrid electric vehicle's curb weight was about 7% heavier on average for the same engine displacement, while greenhouse gas was about 36% lower. It was confirmed that in order to reduce the emission of pollutants of greenhouse gases as well as the air pollutants, it is necessary to expand the supply of eco-friendly vehicles.

Rapid and massive throughput analysis of a constant volume high-pressure gas injection system

  • Ren, Xiaoli;Zhai, Jia;Wang, Jihong;Ren, Ge
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.908-914
    • /
    • 2019
  • Fusion power shutdown system (FPSS) is a safety system to stop plasma in case of accidents or incidents. The gas injection system for the FPSS presented in this work is designed to research the flow development in a closed system. As the efficiency of the system is a crucial property, plenty of experiments are executed to get optimum parameters. In this system, the flow is driven by the pressure difference between a gas storage tank and a vacuum vessel with a source pressure. The idea is based on a constant volume system without extra source gases to guarantee rapid response and high throughput. Among them, valves and gas species are studied because their properties could influence the velocity of the fluid field. Then source pressures and volumes are emphasized to investigate the volume flow rate of the injection. The source pressure has a considerable effect on the injected volume. From the data, proper parameters are extracted to achieve the best performance of the FPSS. Finally, experimental results are used as a quantitative benchmark for simulations which can add our understanding of the inner gas flow in the pipeline. In generally, there is a good consistency and the obtained correlations will be applied in further study and design for the FPSS.

Remote Monitoring Panel and Control System for Chemical, Biological and Radiological Facilities (화생방 방호시설을 위한 원격감시 패널 및 제어시스템)

  • Park, Hyoung-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.464-469
    • /
    • 2019
  • A remote monitoring panel and control system was developed to control various valves and access control chambers, including gas shutoff valves used in CBR(Chemical, Biological and Radiological) facilities. The remote monitoring panel consisted of a main panel installed in the NBC (Nuclear, Biological and Chemical) control room and auxiliary panel installed in the clean room, and the size was divided into pure control and control including CCTV. This system can be monitored and controlled remotely according to the situation where an explosion door and gas barrier door can occur during war and during normal times. This system is divided into normal mode and war mode. In particular, it periodically senses the operation status of various valves, sensors, and filters in the CBR facilities to determine if each apparatus and equipment is in normal operation, and remotely alerts situation workers when repair or replacement is necessary. Damage due to the abnormal operation of each device in the situation can be prevented. This enables control of the blower, supply and exhaust damper, emergency generator, and coolant pump according to the state of shutoff valve and positive pressure valve in the occurrence of NBC, and prevents damage caused by abrupt inflow of conventional weapons and nuclear explosions.

Pipe Network Analysis for Liquid Rocket Engine with Gas-generator Cycle (액체로켓엔진 가스발생기 사이클의 배관망 해석)

  • Lim, Tae-Kyu;Lee, Sang-Bok;Roh, Tae-Seong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.52-57
    • /
    • 2012
  • A liquid rocket system consists of a combustion chamber, a gas generator, a turbo pump, and a turbine, etc. Each component is connected by supply components such as valves, pipes, and orifices. Since each component has a combined effect on engine performance, preliminary analysis for overall system must be required before the conceptual design stage. Comprehensive analysis program considered the supply system has not been developed yet. In this paper, a supply component model of the liquid rocket engine has been designed after verification of each component. The gas generator cycle with supply components has been composed. The results of the cycle has been compared to those of the F-1 engine with the representative gas generator cycle.

  • PDF

Study on the Current Safety Management Status and Safety Improvement of Gas Valve (가스밸브의 안전관리 현황 및 안전성 향상 연구 (모니터링을 중심으로))

  • Choe, Byeong-Gyu;Cha, Min-Chang;Kim, Jin-Jun
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.5
    • /
    • pp.57-63
    • /
    • 2016
  • Though a valve is a very important part in a system to control properly, it has potential failure caused by gap from valve stem to ball connection, and abrasion, crack, fixation causing operational trouble and accidents. 64% of the valve failure in the real case was the failure of airtightness and most accidents of leakage and explosion were occurred while fixing the failure. While there are no proper safety manual, maintenance procedure and regulation for industrial valves excluding safety valve, safety management for the valves is left to the discretion of the maintenance company. Strict maintenance that removes hazards and emergency response procedure are required to prevent and reduce the loss of accident. This study suggests safety enhancement measures through valve monitoring by investigating the status of use of valve and current maintenance. Enhancement of gas safety management can be acquired by a monitoring system that provides diagnosis for valve status, monitoring real-time gas leakage, management of entire cycle lifetime that can reduce maintenance cost.

Magnetic Properties of Spin Valve Ta Underlayer Depending on N2 Concentration and Annealing Temperature (스핀 밸브 Ta 하지층의 질소함유량 변화와 열처리 온도에 따른 자기적 특성)

  • Choi, Yeon-Bong;Kim, Ji-Won;Jo, Soon-Chul;Lee, Chang-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.4
    • /
    • pp.226-230
    • /
    • 2005
  • In this research, magnetic properties and annealing effects of the spin valve structures were investigated, which have Ta underlayer deposited with Ar and $N_2$ gas mixture. Also, TaN underlayer as a diffusion barrier and the substrate were investigated. The structure of the spin valve was Si($SiO_2$)/Ta(TaN)/NiFe/CoFe/Cu/CoFe/FeMn/Ta. Deposition rate was decreased and resistivity and roughness of the TaN films were increased as the $N_2$ gas flow was increased. The XRD results after high temperature annealing showed that Silicides were created in Si/Ta layer, but not in Si/TaN layer. Magnetoresistance ratio (MR) and exchange coupling field ($H_{ex}$) were decreased when the $N_2$ gas flow was increased over 4.0 sccm. The MR of the spin valves with Ta and TaN films deposited with up to 4.0 sccm of $N_2$ gas flow was increased about $0.5\%$ until the annealing temperature of up to $200^{\circ}C$ and then, decreased. TaN film deposited with 8.0 sccm of $N_2$ gas flow showed twice the adhesion of the Ta film. The above results indicate that with 3.0 sccm of $N_2$ gas flow during the Ta underlayer deposition, the magnetic properties of the spin valves are maintained, while the underlayer may be used as a diffusion barrier and the adhesion between the Si substrate and the underlayer is increased.