• Title/Summary/Keyword: Gas Valves

Search Result 180, Processing Time 0.035 seconds

Development of IoT-based Safety Management Method through an Analysis of Risk Factors for Industrial Valves (산업용 밸브의 위험요소 분석을 통한 IoT 기반 안전관리 방안 개발)

  • Kim, Jung-Hoon;Kim, Young-Gu
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.5
    • /
    • pp.35-43
    • /
    • 2019
  • The safety of industrial valves, which are the core parts of plant facilities, are managed by manpower and there are difficulties because of side area for inspection and limited accessibility due to the nature of facilities. The industrial valves used in plant facilities cause problems such as interrupted production; a loss of life due to leak or explosion of poisonous material and flammable gases, and difficulty in locating accident positions in the event of leakage or failure. Therefore, safety management and control systems based on IoT technology are needed. This study is about the development of risk factor prediction technique among the safety management of industrial valves through IoT- based wireless communication and the development of actuator control system. We have developed IoT-based industrial valve safety management techniques to prevent accidents caused by main risk factors by conducting an analysis of the structural characteristics of valves and an analysis of the causes of main risk factors through review of failure data and literature and an analysis of accident scenarios.

Excess Flow Valves for Underground Gas Pipeline and their Performance Testing Equipment Development (연료가스 매몰배관용 과류차단밸브와 성능시험 장치 개발)

  • Lee, Ugwiyeon;Joo, Yukyung;Lee, Jinhan
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.4
    • /
    • pp.74-81
    • /
    • 2018
  • The Korean Government has proceeded petroleum gas pipeline construction business since 2014 for rural districts. The operating pressure of petroleum gas pipeline are from 25kPa to 75kPa which are different from that of natural gas pipeline. Petroleum gas pipeline pressure is ten or forty times higher than natural gas operating pressure. For this reason, petroleum gas pipeline has higher probability of accident occurrence from massive gas leakage. Korea Gas Safety Corporation begins to development excess flow valves and their performance testing equipment since 2017. The excess flow valves stop the gas flow when a overflow happened in gas pipeline. The excess flow valves are generally not installed in main pipeline, because that may block massive gas supply. So, the valves are installed in starting points of branch pipes. According to the number of house and amount of gas use, a shut-off point of exxcess flow valve is determined called as Trip Flow. The trip point is the most important thing of excess flow valve, so, it is required a equipment testing the performances of excess flow valve as trip point.

The necessity of Introducing the In-service Test based on Analysis of Performance Test Result of Pressure Safety Valve (안전밸브 성능점검 자료 분석을 통한 운전 중 점검방법 도입의 필요성 고찰)

  • Jang, Yu Ri;Kim, Jeong Hwan;Kim, Seong Hee;Kwak, Young Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.6
    • /
    • pp.15-22
    • /
    • 2017
  • The pressure safety valve is very important device for securing the safety in the facilities which is operated by high pressure gases. The performance test should be periodically inspected by relate law because the failure of pressure safety valves might be main causes of serious accidents in the industrial fields. Shop test is mainly use for inspecting the performance test of pressure safety valves but the test method is not to be a solution for securing the safety. So, the development of alternative method is required. In this paper, there is a limit to securing the safety if the performance test is with just shop test. The limitation is checked from analysis result based on performance test results of pressure safety valves. The necessity for introducing the in-service test is reviewed to surmount the limitation. As a result, in-service test method should be developed and introduced to improve the inspection efficiency and economical loss. Also, it can be reduce the risk level.

Proportional Gas Flow Control Valve Using Piezo Actuator (압전액추에이터를 이용한 비례 가스유량제어밸브)

  • Yun S.N.;Kim C.Y.;Ham Y.B.;Lee K.W.;Kang J.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.2 no.3
    • /
    • pp.6-11
    • /
    • 2005
  • A household gas valve is used for flow control of LPG(Liquefied Petroleum Gas) or LNG(Liquefied Natural Gas) of which pressure is about $200mmH_2O(\fallingdotseq\;0.0196[bar])$. Currently, two kinds of valves such as rotary type and button type are widely used in many applications. But, these valves have some problems that they are not controllable and reliable. Piezo actuation combined with modem microelectronics provides a reliable, quiet, low energy, infinitely adjustable gas valve. In this paper, gas valve using piezo actuator which are bimorph and a circle type was studied. Also, Prototype for gas valve was manufactured and characteristics of the prototype gas valve were analyzed.

  • PDF

Development of Performance Test Procedure for the Excess Flow Valve for Buried Piping for the Domestic LPG Mass Supply System (국내 LPG 집단공급시설 환경에 적합한 매몰배관용 과류차단밸브 성능시험 절차 개발)

  • Jang, Chanyeong;Lee, Ugwiyeon;Lee, Jinhan
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.6
    • /
    • pp.16-27
    • /
    • 2018
  • Since 2014, the Korean government has begun distributing LPG pipelines and LPG tankers to mountainous or island areas where it is difficult to open urban gas supply chains. When installing LPG supply facilities at village level and county level, it supplied consumers with 10 times higher quasi-low pressure (25 kPa to 100 kPa) than conventional gas supply pressure, increasing the risk of gas accident. Due to the pressure that is 10 times higher than the conventional gas supply pressure, large amounts of gas are released at a faster rate when leaked. In order to secure safety of quasi-low-pressure gas pipes, excess flow valves for quasi-low-pressure gas pipes are not developed and are not supplied in Korea. Therefore, Korea Gas Safety Corporation is investigating the performance standards and products of the excess flow valves in order to localize the excess flow valves.

Design of Anti-Surge Valve for FPSO Fuel Gas Compressor System (FPSO용 연료가스압축 시스템을 위한 서지방지 밸브 설계)

  • Park, Hyung-Wook;Cho, Jong-Rae;Lee, Seung-Min;Park, Jong-Jin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.443-450
    • /
    • 2011
  • Fuel gas compressor system is applied to medium FPSO. In order to avoid surge, this system used the anti-surge valves. When surge occurs it may lead to system's fracture. So anti-surge valves are evaluated structural strength and structural safety. Especially, in emergency mode, valves are must be guaranteed structural safety. In this study, structural strength and structural safety of anti-surge valve was evaluated using the numerical simulation. Unigraphics NX 4.0 was used as Geometrical models, structural strength and structural safety calculation were carried out by ANSYS Workbench 12.1. The ASME Boiler & Pressure Vessel Code is refer to allowable strength and safety factor of the valves.

A Study on the Internal Flow Analysis of High-pressure Shut-off Valve for CNG Charging Station Piping System (CNG 충전소 배관시스템용 고압 차단밸브에 대한 내부 유동해석에 관한 연구)

  • Chin, Do-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.773-779
    • /
    • 2021
  • CNG, which has recently been attracting attention as an alternative fuel in the transportation field to reduce emissions caused by global warming, is natural gas with abundant reserves and mainly composed of methane. Being in a gaseous state, natural gas requires the compression and liquefaction processes for transportation. Until now, general shut-off valves for liquid and gas piping have been developed in Korea, but there are few studies on shut-off valves for high pressures of about 200 bar. Currently, research on the flow analysis of valves is being actively conducted around the world. However, there are relatively many studies on large valves such as low-pressure valves or shipbuilding and marine, and the safety factor through structural analysis to check the structural integrity of the valve is checked at the design stage. Since it is necessary to have a fast response speed while minimizing pressure and speed loss due to flow change, basic research was conducted on the flow analysis of the valve to secure design data, and the numerical analysis was performed on high-pressure automatic shut-off valves applied to CNG refueling stations. After securing the basic valve shape through reverse engineering for advanced products, we compared the valve flow coefficient Cv coefficient with advanced products. As a result, it was found that the reverse engineering model was at the level of about 60%. However, we compared the Cv coefficient by modifying the reverse engineering model, and the result showed that it was improved to about 96%.

Development of Constant Delivery Micro Pump in a Variable Pressure Environment for Intrathecal Drug Administration System (레져버에 압력이 가해지는 환경에서의 미소 정량 토출 펌프의 개발)

  • Lee, Tae Gyeong;Lee, Cheol Su;Jung, Yu Seok;Park, Gyeong Geun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.4
    • /
    • pp.387-394
    • /
    • 2017
  • This paper develops a pump system for patient with chronic pain or cancer. The pump module is consists of two micro-valve and membrane. The micro-valve is operated by a solenoid. With two solenoid valves which are connected via a drug transport line, the inlet and outlet are completely blocked. A silicon rubber membrane located between the two valves makes the flow-rate constant without any backflow. This pump module can control the flow-rate of drugs by controlling the time that the valves are opened and closed. The reservoir consists of a drug chamber and a gas chamber. As the gas chamber encloses the drug chamber, propellant gas which is injected into the gas chamber pressurizes the drug chamber regardless of volume of the drug chamber. To design the pump module, analysis a constant efficiency test, and accuracy test for the pump module were conducted.

Evaluation of Popping Performance of Safety Valves in City Gas Facilities (도시가스시설에서 안전밸브의 분출성능에 관한 평가 연구)

  • 김영규;김청균
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.2
    • /
    • pp.104-108
    • /
    • 1998
  • In order to evaluate the performances of safety valves for low pressure, the popping pressure and flow rate of the natural gas have been investigated. The measured results of the popping pressure show that there is a big scattering depending on the manufacture year of a safety valve. And sample A showed the ideal popping pressure mode compared to other B and C samples. The popping flow rate of the safety valve is proportional to the seat size as the inlet pressure increases. These results may be used as a guideline for a design and diagnosis of the safety valve.

  • PDF

Analytical Study on the Discharge Gas Pulsation in a Twin Rotary Compressor (트윈 로타리 압축기의 토출 가스 맥동 해석)

  • Kim, Hyun-Jin;Ahn, Jong-Min;Cho, Kwang-Myoung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.697-703
    • /
    • 2003
  • For a single stage two cylinder rotary compressor, an analytical study has been made on the discharge gas pulsation. Discharge system of the twin rotary compressor consists of lower and upper mufflers and connecting passage holes between them, and cavities on both sides of the motor and passages between them. Acoustic modeling for the discharge system by transfer matrix method gives acoustic impedances at discharge valves so that gas pulsation at the valve sections can be obtained from discharge mass velocity. Since the mass velocity and the pressure pulsation at the valves are affected by each other, iteration should be made for convergence. Gas pulsations at other sections can also be calculated by using transfer matrix.

  • PDF