• Title/Summary/Keyword: Gas Transportation

Search Result 683, Processing Time 0.033 seconds

A Study on the Enactment Proposal of the Ship sale & Purchase in Maritime Law (해사법상 선박매매에 관한 입법적 고찰)

  • Jeong, Seon-Cheol
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.51-55
    • /
    • 2007
  • This thesis deals with the legal principles, case law decisions and suggestions for the Sale & Purchase of ships concerning enactment proposal of maritime law. Recently, the shipbuilding market has shown a major shift towards East Asia, particularly Korea, Japan and China. The major Korean shipyards in particular have engaged in substantial investment programmes both to expand their overall shipbuilding capacity and to enter new markets, such as for liquefied natural gas(LNG) carriers. The Korean Government has recently taken interest in the sale & purchase of used ships, utilizing the Internet and has made plans for building the Shipping Exchange in korea. So this thesis examines the situation of the world's shipping industry and the different kinds of the Sale & Purchase of ships. deals with the legal principles, and case law decisions. describes Forms of Shipbuilding Contracts and Memorandums of Agreement of second-hand ships. And makes suggestions for 1) the Shipbuilding Contracts of the shipowner's Association of Korea and 2) The Korean Shipbrokers' Association's Memorandum of Agreement for Ship Sale & Purchase in the korean shipping industry. Having reached the end of this thesis. the writer suggests to make terms of sale of ships in the korean civil code and commercial code, Additionally. the writer suggests to make a special law in relation to the Sale & Purchase of ships. Furthermore, the writer suggests expanding the Shipping Exchange in Korea.

  • PDF

Study on Utilization and Prospect of Lignocellulosic Bioethanol in ASEAN Countries (주요 ASEAN 국가의 목질계 바이오에탄올의 활용 및 전망에 관한 연구)

  • Heo, Su Jung;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.588-598
    • /
    • 2017
  • Currently, bioethanol, a fuel additive for transportation, is produced mainly by using biomass (first generation) such as corn and sugar canes. First generation biomass can cause various problems in terms of increase in agricultural prices and ethical reasons. To address these problems, a nonedible lignocellulosic biomass can be utilized. Agricultural byproducts such as straw, bagasse, and forest byproducts from the wood processing industry. Therefore, production of wood based bioethanol can be an effective utilization route of second generation biomass, and its raw materials are more abundant than first generation resources. Furthermore, it is possible to secure cheap raw materials. One of the biggest advantages of using biofuels is that it contributes to the reduction of greenhouse gases by minimizing the environmental impact, unlike fossil fuels. In this study, we investigated the greenhouse gas reduction effects that can be achieved through the use of Lignocellulosic bioethanol and government policies on renewable energy currently being implemented in ASEAN countries (Indonesia, Malaysia, Thailand and the Philippines). In these four countries, policies and incentives related to biofuels have been developed. It is expected that the reduction ratio of carbon dioxide emission and the mixed biofuel will be gradually increased in the future.

Effects of reaction conditions on composition of the organic liquid product during the deoxygenation process of palm oil (팜유(Plam Oil)의 탈산소 공정 중 운전 조건이 생성물의 조성에 미치는 영향)

  • Kim, Sungtak;Jang, Jeong Hee;Ahn, Minhwei;Kwak, Yeonsu;Han, Gi Bo;Jeong, Byung Hun;Han, Jeong Sik;Kim, Jae-Kon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.865-875
    • /
    • 2018
  • Selection of optimum reaction conditions during deoxygenation process of palm oil is essential factor to obtain the maximum yield of bio-jet fuel. In this context, the deoxygenation of palm oil was carried out in a fixed bed reactor with an internal diameter of 1 inch loaded with a 1 wt.% $Pt/Al_2O_3$ catalyst. The composition of the organic liquid product(OLP), which can be utilized as a transportation fuel through the upgrading process, was analyzed by a gas chromatography method. The palm oil/hydrogen ratio and hydrogen pressure in the feed affected the decarboxylation(DCB) and hydrodeoxygenation(HDO) reactions, resulting in a change in the composition of the OLP. As the reaction temperature increased, the continuous cracking reaction of the deoxygenation product was promoted and the product composition in the $C_5{\sim}C_{14}$ region was increased. Thus, the results can help to understand the characteristics of deoxidation reaction of palm oil as well as the subsequent process, hydro-upgrading, to obtain the maximum yield of bio-jet fuel.

Algorithm Deciding Offshore Cable Layout Valid for Integrated Power Supply Between Adjacent Islands (근거리 도서간 통합전력공급에 유효한 해저케이블 포설 방안 결정 알고리즘)

  • Kim, Mi-Young;Rho, Dae-Seok;Moon, Guk-Hyun;Seo, In-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.28-36
    • /
    • 2018
  • Islands are supplied with power from diesel generation or from photovoltaic power generation, and problems with offshore environmental impacts (age deterioration, salt pollution), environmental pollution (exhaust gas, noise, dust) and power generation costs (installation, maintenance) have increasingly emerged. In 2016, the cost recovery rate was only 27%, and deficits reached 73% on 65 islands managed by KEPCO. In terms of deficits, the costs incurred in the power generation sector accounted for 91%, with the ratio of fixed costs at about 60%. Analysis suggests that operating costs can be reduced with an optimal power supply system that improves power generation efficiency and makes operating systems more efficient. Therefore, it is possible to simplify fuel transportation and facility maintenance, because one island integrates the power plants of remote islands, and offshore cable is used to supply power to the other islands. From the economic evaluations in this paper, an algorithm deciding offshore cable layout validity for an integrated power supply between adjacent islands is presented. Simulation results based on the proposed algorithm confirmed that an integrated power supply is economical for existing stand-alone operations on islands having diesel generation, low peak power, and near distances.

Application of Master Packaging System to Fresh Shiitake Mushroom Supply Chain on Semi-commercial Scale (생표고버섯에 대한 마스터 포장 시스템의 현장 적용)

  • An, Duck Soon;Lee, Ji Hye;Lee, Hye Lim;Lee, Dong Sun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.20 no.3
    • /
    • pp.71-76
    • /
    • 2014
  • Master packaging system is a technology combining primary and secondary packaging to preserve the fresh produce in the supply chain. Master packaging system with tailor-designed gas transfer and $CO_2$ absorber of $Ca(OH)_2$ was applied to fresh shiitake mushroom in its supply from farm to retail store. The temperature, humidity and package atmosphere were monitored through the distribution and/or storage until the packages were opened to measure the mushroom quality. Conventional perforated individual packages without secondary master pack were prepared and travelled the same path for comparison purpose. While high temperature history was observed in some initial period of actual practice of the mushroom transportation and storage unexpectedly, the package atmosphere around the produce in the master packaging system was maintained at modified atmosphere consisting of $O_2$ concentration of 0.4 to 4.2% and $CO_2$ concentration of 0.7 to 1.7%, which is known to be beneficial for the mushroom preservation. While curing the mushrooms with precooled drying was effective for quality preservation, positive effect of master packaging system could be apparent for the uncured mushroom. Harmonized combination of curing treatment, master packaging system and temperature management was suggested for the best quality preservation of the fresh shiitake mushroom.

  • PDF

Estimation for CDM of Power Generation by using Bio-diesel (바이오 디젤의 발전용 연료화 CDM 평가)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Rhim, Sang-Kyu;Lee, Jung-Bin
    • Journal of Energy Engineering
    • /
    • v.18 no.2
    • /
    • pp.132-135
    • /
    • 2009
  • Development of biofuels like ethanol and biodiesel for commercial uses is a recent phenomenon. However, the growth of ethanol and biodiesel has been impressive during the period 2000-2007yr. Globally, production of biodiesel stands around 8.3 billion liters. Europe leads the world in biodiesel production with 80% share of the global biodiesel production total. Today biodiesel fuels have been in commercial use in many countries and recently the world-wide biodiesel market has experienced considerable growth, which is partly due to various tax concession programs and other financial incentives. In Korea, biodiesel has already been used for transportation fuel, but not used for power generation fuel yet. Korean government has a strategy for renewable energy propagation, especially the goal of power generation amount by renewable energy is 3% of total power production by 2012. This paper focuses on the estimation study for effect of using biodiesel as power generation fuel. The study also has the plan to replace the fuel of thermal power plant, gas turbine and distributed power generation system. As the increase of biodiesel fuel, I look forward to environment-friendly power generation and the strategy of Renewable Portfolio Standards(RPS).

Recent research trends of post-harvest technology for king oyster mushroom (Pleurotus eryngii) (큰느타리버섯 수확후 관리기술 최근 연구 동향)

  • Choi, Ji-Weon;Yoon, YoeJin;Lee, Ji-Hyun;Kim, Chang-Kug;Hong, Yoon-Pyo;Shin, Il Sheob
    • Journal of Mushroom
    • /
    • v.16 no.3
    • /
    • pp.131-139
    • /
    • 2018
  • The king oyster mushroom (Pleurotus eryngii) is widely consumed because of its flavor, texture, and its functional properties such as antioxidant activity and prebiotic effects. However, long-term product storage and transportation (e.g., export) are difficult because of its limited durability. The shelf-life of king oyster mushroom is affected by environmental factors such as temperature, humidity, gas composition, and ventilation, which may affect sensory characteristics including respiration rate, texture, moisture, flavor, color, and pH. The major problems regarding storage of mushrooms are browning, flavor changes, and softening. To address these problems, novel preservation techniques were developed, and more durable variants were bred. Different drying methods, gamma irradiation, chitosan coating, modified atmosphere (MA) packaging, and controlled atmosphere (CA) storage were evaluated in order to extend the shelf-life of king oyster mushrooms. Freeze drying showed better results for the preservation of mushrooms than other drying methods. Irradiation with 1 kGy was more effective for extending mushroom shelf-life than higher doses. The preservative performance of chitosan-based films was improved by combining the compound with other hydrocolloids, such as oil, protocatechuic acid, and wax. The CA storage conditions recommended for king oyster mushrooms are 5kPa $O_2$ and 10 to 15kPa $CO_2$ at temperatures below $10^{\circ}C$. Active MA packaging with microperforated PP film was also effective for maintaining quality during storage.

2011 Nitrogen Budget of South Korea Including Nitrogen Oxides in Gas Phase (기체상 질소산화물을 포함한 2011년도 대한민국 질소수지 산정)

  • Shin, Jin-Hwan;Yoo, Chae-Won;An, Sang-Woo;Park, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.2
    • /
    • pp.75-83
    • /
    • 2014
  • The present study estimated nitrogen budget of South Korea including nitrogen oxides (NOx) in 2011. Emission sources of NOx were calculated with the higher contributors, such as vehicles, businesses, power plants, based on the IPCC and EPA reports. Moreover, nitrogen budget was separated for city, agriculture livestock and forest. Input and output were chemical fertilizer, crop uptake, fixation, irrigation, compost, leaching, volatilization, imported food, denitrification, runoff, and so on. Annual nitrogen input were 1,692,650 ton/yr and output were 837,739 ton/yr which were increased from 2010 budget. In 2011, NOx emissions by vehicles, power plants, and businesses were 308,207 ton/yr, 601,437 ton/yr, and 469,946 ton/yr, respectively. Including nitrogen oxide, total nitrogen input and output in 2011 was calculated as 5,652,366 ton/yr and 1,425,371 ton/yr, respectively.

Study on the Application of V2G for Electric Vehicles in Korea Using Total Cost of Ownership Analysis (총소유비용 분석을 이용한 전기차의 V2G 도입에 대한 연구)

  • Kim, Younghwan;Lee, Jae-Seung
    • Journal of Energy Engineering
    • /
    • v.24 no.2
    • /
    • pp.129-143
    • /
    • 2015
  • Increasing concerns on climate change and energy security accelerated policies to reduce green-house gas emission, especially from the transportation sector. Electric vehicle (EV) has been on the spotlight to deal with such environmental issue and V2G (Vehicle-to-Grid) technology began to draw attentions as an alternative to reduce ownership costs while contributing to an efficient and decentralized power grid. This study conducts a scenario analysis on total cost of ownership of EV under V2G scheme and compare with non-V2G EV and Internal Combustion Engine (ICE) vehicle. As result, V2G service is expected to provide an annual average profit of $210 to EV users willing to reverse flow its residual power in the battery. The profit from V2G service leaves a margin of $4,530 over operational lifetime, compared with $2,420 cost of charge for non-V2G EV. In summary, total cost of ownership of V2G-capable EV was 6.2% less than non-V2G EV and 10.2% higher than ICE vehicle. The results confirm a comparative economic advantage of operating EV under V2G scheme. Increased number of EVs with V2G service has shown to provide positive effects to power industry for valley filling in load distribution, thus, favorably increasing the overall economic feasibility.

Analytical Method Development and Monitoring of Residual Solvents in Dietary Supplements (건강기능식품 중 잔류용매 분석법 개발 및 모니터링)

  • Lee, Hwa-Mi;Shin, Ji-Eun;Jang, Young-Mi;Kim, Hee-Yun;Kim, Mee-Hye
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.4
    • /
    • pp.390-397
    • /
    • 2010
  • Residual solvents in foods are defined as organic volatile chemicals used or produced in manufacturing of extracts or additives, or functional foods. The solvents are not completely eliminated by practical manufacturing techniques and they also may become contaminated by solvents from packing, transportation or storage in warehouses. Because residual solvents have no nutritional value but may be hazardous to human health, there is a need to remove them from the final products or reduce their amounts to below acceptable levels. The purpose of this study was to develop and evaluate an analytical method for the screening of residual solvents in health functional foods. Furthermore, the aim of this study was to constitute a reasonable management system based on the current state of the market and case studies of foreign countries. Eleven volatile solvents such as MeOH, EtOH, trichloroethylene and hexane were separated depending on their column properties, temp. and time using Gas Chromatography (GC). After determining the GC conditions, a sample preparation method using HSS (Head Space Sampling) was developed. From the results, a method for analyzing residual solvents in health functional foods was developed considering matrix effect and interference from the sample obtained from the solution of solvents-free health functional foods spiked with 11 standards solutions. Validation test using the developed GC/HSS/MS (Mass Spectrometry) method was followed by tests for precision, accuracy, recovery, linearity and adequate sensitivity. Finally, examination of 104 samples grouped in suits was performed by the developed HSS/GC/MS for screening the solvents. The 11 solvents were isolated from health functional foods based on vapor pressure difference, and followed by separation within 15 minutes in a single run. The limt of detection (LOD), limit of quantification (LOQ), recovery and coefficient of variation (C.V.) of these compounds determined by the HSS/GC/MS were found to be 0.1 pg/mL, 0.1-125 pg/g, 51.0-104.6%, and less than 15%, respectively. Using the developed HSS/GC/MS method, residual solvent from 16 out of 104 health functional products were detected as a EtOH. This method therefore seems t o be a valuable extension ofanalytical method for the identification of residual solvents in health functional food.