• 제목/요약/키워드: Gas Toxicity

검색결과 194건 처리시간 0.024초

화학사고 시 수용체 보호를 위한 독성끝점 농도와 급성독성 자료를 활용한 우려농도 예측값 조사 (Investigation of the Guidance Levels for Protecting Populations from Chemical Exposure and the Estimation of the Level of Concern Using Acute Toxicity Data)

  • 이지윤;김순신;양원호;윤준헌;류지성;김정곤;지경희
    • 한국환경보건학회지
    • /
    • 제44권1호
    • /
    • pp.44-54
    • /
    • 2018
  • Objectives: To protect individuals working at the site as well as the surrounding general population from a chemical accident, several emergency exposure guidance levels have been used to set a level of concern for certain chemicals. However, a level of concern has not been established for many substances that are frequently used or produced in large quantities in Korean workplaces. In the present study, we investigated the guidance levels for protecting populations from chemical exposure and the estimation of level of concern using acute inhalation and oral toxicity data. Methods: The number of chemicals to which emergency exposure guidance levels (e.g., ERPG-2, AEGL-2, PAC-2, and IDLH) can be applied were determined among 822 hazardous chemicals according to the 'Technical Guidelines for the Selection of Accident Scenarios (revised December 2016)'. The ERPG and AEGL values were compared across all three tiers for the 31 substances that appeared on both lists. We examined the degree of difference between the emergency exposure guidance levels and the estimates of level of concern calculated from acute inhalation or acute oral toxicity data. Results: Among the 822 hazardous chemicals, emergency exposure guidance levels can be applied to 359 substances, suggesting that the estimates of level of concern should be calculated using acute toxicity data for 56.3% of the hazardous chemicals. When comparing the concordance rates of ERPG and AEGL for 31 substances, the difference between the two criteria was generally small. However, about 40% of the substances have values diverging by more than three-fold in at least one tier. Such discrepancies may cause interpretation and communication problems in risk management. The emergency exposure guidance levels were similar to the estimates of level of concern calculated using acute inhalation toxicity data, but the differences were significant when using acute oral toxicity data. These results indicate that the level of concern derived from acute oral toxicity data may be insufficient to protect the population in some cases. Conclusion: Our study suggests that the development of standardized guidance values for emergency chemical exposure in the Korean population should be encouraged. It is also necessary to analyze acute toxicity data and fill the information gaps for substances that are important in Korean workplace situations.

Analysis of 3-MCPD and 1,3-DCP in Various Foodstuffs Using GC-MS

  • Kim, Wooseok;Jeong, Yun A;On, Jiwon;Choi, Ari;Lee, Jee-yeon;Lee, Joon Goo;Lee, Kwang-Geun;Pyo, Heesoo
    • Toxicological Research
    • /
    • 제31권3호
    • /
    • pp.313-319
    • /
    • 2015
  • 3-Monochloro-1,2-propanediol (3-MCPD) and 1,3-dichloro-2-propanol (1,3-DCP) are not only produced in the manufacturing process of foodstuffs such as hydrolyzed vegetable proteins and soy sauce but are also formed by heat processing in the presence of fat and low water activity. 3-MCPD exists both in free and ester forms, and the ester form has been also detected in various foods. Free 3-MCPD and 1,3-DCP are classified as Group 2B by the International Agency for Research on Cancer. Although there is no data confirming the toxicity of either compound in humans, their toxicity was evidenced in animal experimentation or in vitro. Although few studies have been conducted, free 3-MCPD has been shown to have neurotoxicity, reproductive toxicity, and carcinogenicity. In contrast, 1,3-DCP only has mutagenic activity. The purpose of this study was to analyze 3-MCPD and 1,3-DCP in various foods using gas chromatography-mass spectrometry. 3-MCPD and 1,3-DCP were analyzed using phenyl boronic acid derivatization and the liquid-liquid extraction method, respectively. The analytical method for 3-MCPD and 1,3-DCP was validated in terms of linearity, limit of detection (LOD), limit of quantitation, accuracy and precision. Consequently, the LODs of 3-MCPD and 1,3-DCP in various matrices were identified to be in the ranges of 4.18~10.56 ng/g and 1.06~3.15 ng/g, respectively.

멀티모달 방식을 통한 가스 종류 인식 딥러닝 모델 개발 (Development of Gas Type Identification Deep-learning Model through Multimodal Method)

  • 안서희;김경영;김동주
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권12호
    • /
    • pp.525-534
    • /
    • 2023
  • 가스 누출 감지 시스템은 가스의 폭발성과 독성으로 인한 인명 피해를 최소화할 핵심적인 장치이다. 누출 감지 시스템은 대부분 단일 센서를 활용한 방식으로, 가스 센서나 열화상 카메라를 통한 검출 방식으로 진행되고 있다. 이러한 단일 센서 활용의 가스 누출감지 시스템 성능을 고도화하기 위하여, 본 연구에서는 가스 센서와 열화상 이미지 데이터에 멀티모달형 딥러닝을 적용한 연구를 소개한다. 멀티모달 공인 데이터셋인 MultimodalGasData를 통해 기존 논문과의 성능을 비교하였고, 가스 센서와 열화상 카메라의 단일모달 모델을 기반하여 네 가지 멀티모달 모델을 설계 및 학습하였다. 이를 통해 가스 센서와 열화상 카메라는 각각 1D CNN, GasNet 모델이 96.3%와 96.4%의 가장 높은 성능을 보였다. 앞선 두 단일모달 모델을 기반한 Early Fusion 형식의 멀티모달 모델 성능은 99.3%로 가장 높았으며, 또한 기존 논문의 멀티모달 모델 대비 3.3% 높았다. 본 연구의 높은 신뢰성을 갖춘 가스 누출 감지 시스템을 통해 가스 누출로 인한 추가적인 피해가 최소화되길 기대한다.

작업장에서 사용하는 포름아미드(Formamide)의 근로자 건강 유해성과 위험성 평가 (Worker Health Hazard and Risk Assessment of Formamide using in Workplaces in South Korea)

  • 김현영
    • 한국가스학회지
    • /
    • 제20권2호
    • /
    • pp.35-42
    • /
    • 2016
  • 포름아미드(formamide)는 암모니아 냄새의 무색 액체로 흡입 시 자극성이 강하며, 급성독성 $LD_{50}$ 5,577 mg/kg(랫드), 표적장기(간장) 전신독성의 무유해영향농도(NOAEL)는 113 mg/kg/day) 및 생식독성물질(1B)로 작업환경 노출기준은 10 ppm이었다. 포름아마이드 취급사업장에 대한 작업환경 측정결과는 25개 시료 모두가 노출기준보다 매우 낮은 농도를 보였다. 그러나 작업강도, 국소배기장치의 가동 및 보호구(방독마스크)의 착용 여부 등 작업환경에 따라 노출농도가 변할 수 있어 가상 노출 시나리오별 노출량을 산출한 결과 노출량은 $5.16mg/m^3$, $1.72mg/m^3$, $0.43mg/m^3$으로 산출되었다. 이를 전신독성 및 생식독성의 유해성을 고려한 위험성을 평가한 결과 평균값은 0.02-0.58, 누적 90% 값은 0.02-0.66, 95% 값은 0.02-0.69로 모두 1보다 낮은 대체로 안전한 값으로 산출되었다. 단, 작업 상황에 따라 순간적 고농도에 노출될 위험도 있으며, 간독성 및 생식독성 물질이기에 건강장해 예방을 위해 노출되지 않도록 취급 시 주의가 요망된다.

아급성흡입독성시험을 이용한 3-Methylpentane의 GHS 분류·표시 (A Study on GHS Classification of 3-Methylpentane by Subacute Inhalation Toxicity)

  • 정용현;한정희;신서호
    • 한국가스학회지
    • /
    • 제21권1호
    • /
    • pp.6-17
    • /
    • 2017
  • 본 연구는 3-methylpentane에 대한 흡입유해성을 평가하여 국제연합에서 정하는 화학물질의 분류 및 표지에 관한 세계조화시스템(Globally harmonized system, GHS)지침 및 고용노동부고시 제2013-37호에 따른 3-methylpentane의 화학물질 분류 표시 자료를 생산하기 위하여 OECD 화학물질 시험가이드라인 아급성흡입독성시험 TG 412(Subacute inhalation toxicity) 시험법에 따라 수행하였다. 본 연구를 위하여 6주령의 랫드(Rat)를 도입하여 1주간 순화시킨 후 암수 각각 대조군 5마리, 저농도군(284 ppm) 5마리, 중농도군(1,135 ppm) 5마리, 고농도군(4,540 ppm) 5마리 등으로 군을 구성하여 일일 6시간, 주 5일, 4주 동안 시험물질을 랫드에 전신으로 노출시켰다. 시험물질 노출을 종료하고 2주 후 시험동물을 희생하여 시험물질에 의한 시험동물의 영향을 평가하였다. 사료섭취량 변화, 체중 변화, 임상관찰, 혈액검사, 부검 소견, 장기무게 측정, 조직병리검사 등 모든 시험결과에서 시험물질에 의한 영향은 나타나지 않아 3-methylpentane의 무유해영향농도는 암수 모두 4,540 ppm이상으로 판단되어 세계조화시스템(GHS) 지침 및 고용노동부고시 제2013-37호(화학물질의 분류 표시 및 물질안전보건에 관한 기준)의 특정표적장기독성(반복노출) 구분 표시 물질에 해당하지 않은 물질로 판단되었다.

담배 주류연의 생물학적 활성에 대한 흡연조건의 영향 (Effect of smoking conditions on the biological activity of cigarette mainstream smoke)

  • 신한재;박철훈;손형옥;이형석;유지혜;이병찬;현학철
    • 한국연초학회지
    • /
    • 제30권1호
    • /
    • pp.14-24
    • /
    • 2008
  • The objective of this study was to determine the effect of smoking conditions on the in vitro toxicological activity of mainstream smoke. The 2R4F reference cigarette was machine-smoked by International Organization for Standardization(ISO) and Canadian Intense(CI) conditions. Smoke was analysed for chemical composition and in vitro toxicity. The cytotoxic potencies of both the total particulate matter(TPM), which were collected in Cambridge filter pad, and gas/vapor phase(GVP), which was bubbled through in phosphate-buffer saline in a gas-washing bottle, were assessed neutral red up take assay with chinese hamster ovary(CHO) cells. The assessment for genotoxicity of TPMs generated under ISO and CI conditions was determined using Salmonella mutagenicity assay and in vitro micronucleus assay. When calculated on an equal TPM basis, in vitro toxicity of TPM obtained under CI condition was decreased compared to TPM generated under ISO condition. The results of chemical composition analyses revealed that the lower toxicological activity under CI condition than that of ISO condition could be explained by the decreased in the contents of phenols, N-nitrosoamines and aromatic amines of TPM on an equal TPM basis.

Acute Respiratory Distress Due to Methane Inhalation

  • Jo, Jun Yeon;Kwon, Yong Sik;Lee, Jin Wook;Park, Jae Seok;Rho, Byung Hak;Choi, Won-Il
    • Tuberculosis and Respiratory Diseases
    • /
    • 제74권3호
    • /
    • pp.120-123
    • /
    • 2013
  • Inhalation of toxic gases can lead to pneumonitis. It has been known that methane gas intoxication causes loss of consciousness or asphyxia. There is, however, a paucity of information about acute pulmonary toxicity from methane gas inhalation. A 21-year-old man was presented with respiratory distress after an accidental exposure to methane gas for one minute. He came in with a drowsy mentality and hypoxemia. Mechanical ventilation was applied immediately. The patient's symptoms and chest radiographic findings were consistent with acute pneumonitis. He recovered spontaneously and was discharged after 5 days without other specific treatment. His pulmonary function test, 4 days after methane gas exposure, revealed a restrictive ventilatory defect. In conclusion, acute pulmonary injury can occur with a restrictive ventilator defect after a short exposure to methane gas. The lung injury was spontaneously resolved without any significant sequela.

Breakdown Characteristics of SF6 and Liquefied SF6 at Decreased Temperature

  • Choi, Eun-Hyeok;Kim, Ki-Chai;Lee, Kwang-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권5호
    • /
    • pp.765-771
    • /
    • 2012
  • $SF_6$ gas has been used as arc quenching and insulating medium for high and extra high voltage switching devices due to its high dielectric strength, its excellent arc-quenching capabilities, its high chemical stability and non toxicity. Despite of its significant contributions, the gas was classified as one of the greenhouse gas in the Kyoto Protocol. Thus, many researches are conducted to find out the replacement materials and to develop the $SF_6$ gas useless electrical equipment. This paper describes experiments on the temperature change-related breakdown characteristics of $SF_6$ gas ($SF_6$) and $SF_6$ liquid ($LSF_6$) in a model GIS(Gas-Insulated Switchgear) chamber in order to show the possibility of more stable and safe usages of $SF_6$ gas. The breakdown characteristics are classified into three stages, namely the gas stage of $SF_6$ according to Paschen's law, the coexisting stage of $SF_6$ gas with liquid in considerable deviation at lower temperature, and the stage of $LSF_6$ and remaining air. The result shows that the ability of the $LSF_6$ insulation is higher than the high-pressurized $SF_6$. Moreover, it reveals that the breakdown characteristics of $LSF_6$ are produced by bubble-formed $LSF_6$ evaporation and bubbles caused by high electric emission and the corona. In addition, the property of dielectric breakdown of $LSF_6$ is determined by electrode form, electrode arrangement, bubble formation and movement, arc extinguishing capacity of the media, difficulty in corona formation, and the distance between electrodes. The bubble formation and flow separation phenomena were identified for $LSF_6$. It provides fundamental data not only for $SF_6$ gas useless equipment but also for electric insulation design of high-temperature superconductor and cryogenic equipment machinery, which will be developed in future studies.

연소온도 조건에 따른 FRP 및 시트커버 내장재의 연소가스 발생량 비교 (Comparison of combustion gas release for FRP and seat cover materials to the Furnace temperature)

  • 이덕희;정우성;이철규;유문천
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.1527-1532
    • /
    • 2007
  • We have evaluated the toxicity of interior materials for the railway passenger car by checking the release of $CO_2$, CO, NOx, SO2, HCl, HF, HBr, HCN. The NOx is one of the most effective for the determination of Toxic Index R value. It is generally known that the mechanism of thermal NOx generation without the Interior Material nitrogen source. This study started from the idea to check the NOx difference according to the furnace temperature. But from the results, it was revealed that NOx is not so sensitive for the furnace temperature in case of solid burning. Other gases such as HCN, CO were more changeable to the furnace Temp. We reported the test result as for toxicity index r(x).

  • PDF

Pulmonary Fibrosis caused by Asbestos Fibers in the Respiratory Airway

  • Jung, Ji-Woo;Kim, Eung-Sam
    • 대한의생명과학회지
    • /
    • 제27권3호
    • /
    • pp.111-120
    • /
    • 2021
  • Asbestos products had been widely used until 2007 in Korea since the 1930s. A total ban on their production and applications has been imposed because of the toxic effect of asbestos fibers on the human health. The inhaled asbestos fibers increase reactive oxygen species and inflammatory reactions in the respiratory airway including the alveolar sac, resulting in DNA damages and secretion of several inflammatory cytokines or chemokines. These paracrine communications promote the proliferation of fibroblasts and the synthesis of collagen fibers, thereby depositing them into the extracellular matrix at the interstitial space of alveoli. The fibrotic tissue hindered the gas exchange in the alveolus. This reviews describes not only the cytotoxic effects of asbestos fibers with different physical or chemical characteristics but also the interaction of cells that make up the respiratory airway to understand the molecular or cellular mechanisms of asbestos fiber-induced toxicity. In addition, we propose a pulmonary toxicity research technique based on the mini-lung that can mimic human respiratory system as an alternative to overcome the limitations of the conventional risk assessment of asbestos fibers.