• Title/Summary/Keyword: Gas Resistance

Search Result 1,361, Processing Time 0.026 seconds

The Applications of Sol-Gel Derived Tin Oxide Thin Films

  • Park, Sung-Soon;John D. Mackenzie
    • The Korean Journal of Ceramics
    • /
    • v.2 no.1
    • /
    • pp.1-10
    • /
    • 1996
  • Transparent conducting $SnO_2$-based thin films have been coated on float substrates such as fused quartz, and ceramic fiber cloths such as the Nexel and E-glass cloth from tin alkoxides by the sol-gel technique. Also, thin films of alternating layers of $SnO_2$ and $SiO_2$ have been fabricated by dip coating. The sheet resistance and average visible transmittance of the films were investigated in the aspect of the applications as transparent electrodes such as liquid crystal displays, photo-detectors and solar cells. The Nextel and E-glass cloths coated with antimony-doped tin oxide (ATO) had sheet resistance of as low as $20 \;ohm/{\Box}$ and $120ohm/\;{\Box}$, respectively. The promotion effects of additives as $La_2O_3$ and Pt on the ethanol gas sensing properties of the films were investigated in the aspects of the applications as an alcohol sensor and a breath alcohol checker. Possible evidence of quantum well effects in the oxide multilayers of $SnO_2$ and $SiO_2$ was investigated.

  • PDF

Fatigue Characteristics and its Nondestructive Evaluation of Fire-resistance Steel for Construction with Low Yield Ratio and High Strength (저항복비·고강도 구조용 내화강의 피로특성 및 비파괴평가)

  • Kim, H.S.;Nam, K.W.;Kang, C.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.4
    • /
    • pp.212-219
    • /
    • 2001
  • The fatigue test was carried out to evaluate the fatigue characteristics of fire resistance steel for frame structure and heat affected zone (HAZ) by the one side Gas Metal Arc Welding (GMAW). In this paper, the fatigue crack growth behavior was investigated with the compact tension specimen of base metal and the HAZ according to chemical composition and rolling end temperature, respectively. And the acoustic emission signals obtained from the fatigue test were analyzed by the time-frequency analysis method as a nondestructive evaluation. Main results obtained are summarized as follows; The hardness was appeared softening phenomenon that weld metal and HAZ are lower than that of base metal. Fatigue life of welded specimen was longer than that of base metal. m was 3~4.5 in base metal and 3.8~5.8 in HAZ. The main frequency range of acoustic emission signal analyzed from time-frequency method is different with the range by noise and crack. Also, it could be classified that it was also generated by fracture mechanics of dimple, inclusion etc.

  • PDF

Development of GMAW Process with Twin Torch for Wide Overlay using Compound Filler Plate (분말 용가재판을 사용한 광폭 오버레이용 트윈토치 GMAW 공정개발)

  • Hwang, Kyu-Min;Kim, Sung-Deok;Jung, Byung-Ho;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.26 no.4
    • /
    • pp.44-49
    • /
    • 2008
  • Generally, wear plate is steel plate having improved surface contact strength and impact strength by surface hardening which is welded using materials with good corrosion resistance, wear resistance and thermal resistance property. CFP GMAW(Compound Filler Plate Gas Metal Arc Welding) is the cladding method using GMAW with the CFP, which is bound with waterglass, on the substrate. It has advantages of reducing compound powder loss, uniform penetration, and preventing hardness decrease. To develope mass production technique of CFP GMAW process for production of high quality wear plate, the method for controling shallow penetration and increasing productivity is required. In this study, twin torch method applied to CFP GMAW process for increasing productivity. And the method was developed by controling penetration control, CFP dry time, gas formation flux and water glass concentration. As a result, applying twin torch method to CFP GMAW process was possible and high quality wide bead could be made without overlap joint.

Strain-Sensing Characteristics of Multi-Walled Carbon Nanotube Sheet

  • Jung, Daewoong;Lee, Gil S.
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.315-320
    • /
    • 2013
  • In this paper, the properties of strain sensors made of spin-capable multi-walled carbon nanotubes (MWCNTs) were characterized and their sensing mechanisms analyzed. The key contribution of this paper is a new fabrication technique that introduces a simpler transfer method compared to spin-coating or dispersion CNT. Resistance of the MWCNT sheet strain sensor increased linearly with higher strain. To investigate the effect of CNT concentration on sensitivity, two strain sensors with different layer numbers of MWCNT sheets (one and three layers) were fabricated. According to the results, the sensor with a three-layer sheet showed higher sensitivity than that with one layer. In addition, experiments were conducted to examine the effects of environmental factors, temperature, and gas on sensor sensitivity. An increase in temperature resulted in a reduction in sensor sensitivity. It was also observed that ambient gas influenced the properties of the MWCNT sheet due to charge transfer. Experimental results showed that there was a linear change in resistance in response to strain, and the resistance of the sensor fully recovered to its unstressed state and exhibited stable electromechanical properties.

Acetone Sensing Characteristics of ZnO Nanoparticles Prepared from Zeolitic Imidazolate Framework-7 (Zeolitic Imidazolate Framework-7로 합성한 ZnO 나노입자의 Acetone 가스 감응 특성)

  • Yoon, Ji Won;Wang, Rui;Park, Joon-Shik;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.204-208
    • /
    • 2017
  • Highly uniform and well-dispersed Zeolitic Imidazolate Framework-7 (ZIF-7) particles were prepared by the precipitation of $Zn^{2+}$ using benzimidazole, which were converted into ZnO nanoparticles by heat treatment at $500^{\circ}C$ for 24 h. The ZIF-7 derived ZnO nanoparticles showed abundant mesopores, high surface area, and good dispersion. The gas sensing characteristics toward 5 ppm acetone, ethanol, trimethylamine, ammonia, p-xylene, toluene, benzene, and carbon monoxide and carbon dioxide were investigated at $350-450^{\circ}C$. ZIF-7 derived ZnO nanoparticles exhibited high response to 5 ppm acetone ($R_a/R_g=57.6$; $R_a$: resistance under exposure to the air, Rg: resistance under exposure to the gas) at $450^{\circ}C$ and negligible cross-responses to other interference gases (trimethylamine, ammonia, p-xylene, toluene, benzene, carbon monoxide, carbon dioxide) and relatively low responses to ethanol. ZIF derived synthesis of metal oxide nanoparticles can be used to design high performance acetone sensors.

Effect of the Calcination Temperature and Li(I) Doping on Ethanol Sensing Properties in p-Type CuO Thin Films

  • Choi, Yun-Hyuk
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.764-773
    • /
    • 2019
  • The gas response characteristic toward C2H5OH has been demonstrated in terms of copper-vacancy concentration, hole density, and microstructural factors for undoped/Li(I)-doped CuO thin films prepared by sol-gel method. For the films, both concentrations of intrinsic copper vacancies and electronic holes decrease with increasing calcination temperature from 400 to 500 to 600 ℃. Li(I) doping into CuO leads to the reduction of copper-vacancy concentration and the enhancement of hole density. The increase of calcination temperature or Li(I) doping concentration in the film increases both optical band gap energy and Cu2p binding energy, which are characterized by UV-vis-NIR and X-ray photoelectron spectroscopy, respectively. The overall hole density of the film is determined by the offset effect of intrinsic and extrinsic hole densities, which depend on the calcination temperature and the Li(I) doping amount, respectively. The apparent resistance of the film is determined by the concentration of the structural defects such as copper vacancies, Li(I) dopants, and grain boundaries, as well as by the hole density. As a result, it is found that the gas response value of the film sensor is directly proportional to the apparent sensor resistance.

Quality Management of ITO Thin Film for OLED Based on Relationship of Fabrication and Characteristics (OLED용 ITO박막의 공정조건과 품질특성 추론에 근거한 품질관리)

  • Seo, Jeong-Min;Park, Keun-Young;Lee, Sang-Ryong;Lee, Choon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.4
    • /
    • pp.336-341
    • /
    • 2008
  • Recently, research on a flat panel display(FPD) has focused on organic light-emitting display(OLED) which has wide angle of view, high contrast ratio and low power consumption. ITO(Indium-Tin-Oxide) films are the most widely used material as a transparent electrode of OLED and also in many other display devices like LCD or PDP. The performance and efficiency of OLED is related to the surface condition of ITO coated glass substrate. The typical surface defect of glass substrate is measured for electric characteristics and physical condition for transmittance and roughness. Since ITO coated glass substrate can be destroyed for inspection about surface roughness, sheet resistance, film thickness and transmittance, precise fabrication condition should be made based on the estimated relationship. In this paper, ITO films were prepared on the commercial glass substrate by the Ion-Plating method changing the partial pressure of gas(Ar, 02) and the chamber temperature between $200^{\circ}C$ and $300^{\circ}C$. The characteristics of films were examined by the 4-point probe, supersonic thickness measurement, transmittance measurement and AFM. We estimated the relationship between processing parameters(Ar gas, O2 gas, Temperature) and properties of ITO films (Sheet Resistance, Film Thickness, Transmittance, Surface Roughness).

Load-Bearing Capacity of Subsea Pipeline with Variation of Sea Water Depth and Buried Depth (수심과 퇴적 깊이 변화에 따른 해저배관의 하중지지능력 평가)

  • Baek, Jong-Hyun;Kim, Young-Pyo;Kim, Woo-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1131-1137
    • /
    • 2012
  • Subsea pipelines have been operated with buried depths of 1.2-4m underneath the seabed to prevent buoyancy and external impacts. Therefore, they have to show resistance to both the soil load and the hydrostatic pressure. In this study, the structural integrity of a subsea pipeline subjected to soil load and hydrostatic pressure was evaluated by using FE analyses. A parametric study showed that the internal pressure increased the plastic collapse depth by increasing the resistance to plastic collapse. The hoop stress increased with an increase in the buried depth for the same water depth; however, the hoop stress decreased with an increase in the water depth for the same buried depth.

VOCs(Volatile Organic Compounds) sensor using SnO2 nanowires (산화주석 나노선을 이용한 VOCs 센서)

  • Hwang, In-Sung;Kim, Sun-Jung;Kim, Yoon-Sung;Ju, Byeong-Kwon;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.69-74
    • /
    • 2008
  • VOCs (Volatile Organic Compound) sensors were fabricated using $SnO_2$nanowires-based thin films and its gas sensing behaviors were studied. The $SnO_2$ nanowires synthesized from a thermal evaporation process were dispersed in a solution and the sensor film was prepared by dropping the slurry on the substrate with the electrodes and an embedded heater. The gas response (Ra/Rg, Ra: resistance in air, Rg: resistance in gas) to $30{\sim}40$ ppm Benzene, Ethyl Benzene, o-xylene were in the range of $39{\sim}42$, which were significantly higher than those to 50 ppm of CO, $CH_4$ and $C_3H_8$ ($12{\sim}19$).

Preparation of Precision Thin Film Resistor Sputtered by Magnetron Sputtering (IC용 초정밀 박막저항소자의 제조와 특성연구)

  • Ha, H.J.;Jang, D.J.;Moon, S.R.;Park, C.S.;Cho, J.S.;Park, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1236-1238
    • /
    • 1994
  • TiAlN thin films were prepared by a multi target r.f magnetron sputtering system under different conditions. We have investigated the resistivity and T.C.R. (Temperature Coefficient of Resistance) characteristics of TiAlN films deposited on $Al_2O_3$ and glass substrates by sputtering in an $Ar:N_2$ gas mixture. We used Al and Ti metal as Target Material and $Ar:N_2$ gas as working gas. We varied the partial pressure ratio of $N_2/Ar$ from 0.2/7 to 1.0/6.2 (SCCM). And the R.F power of Ti and Al Target also were varied as 160/240, 200/200 and 240/160(W). In this experiment, we can get the precision thin film resistor with a very low T.C.R. (Temperature Coefficient of Resistance) below 25 ppm ${\Omega}/^{\circ}C$.

  • PDF