• Title/Summary/Keyword: Gas Hydrates

Search Result 122, Processing Time 0.025 seconds

The R&D - Validity of Gas hydrates (가스 하이드레이트 R&D 타당성 평가)

  • Kim Yu Jeong;Kim Seong Yong;Huh Dae-Gee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.647-650
    • /
    • 2005
  • Gas hydrates draw great at tent ion recently as a new clean energy resources substituting conventional oil and gas hydrate its presumed huge amount of volume reaching 10 trillion tons of gas and environmentally friendly characteristics. Gas hydrate can contribute to the rapidly increasing consumption of natural gas in Korea and achieve the self support target by 2010 which is $30\%$ of total natural gas demand. This paper shows the importance and benefit of Gas hydrate comparing with new & renewable energy in Korea

  • PDF

Formation and Dissociation Processes of Gas Hydrate Composed of Methane and Carbon Dioxide below Freezing

  • Hachikubo, Akihiro;Yamada, Koutarou;Miura, Taku;Hyakutake, Kinji;Abe, Kiyoshi;Shoji, Hitoshi
    • Ocean and Polar Research
    • /
    • v.26 no.3
    • /
    • pp.515-521
    • /
    • 2004
  • The processes of formation and dissociation of gas hydrates were investigated by monitoring pressure and temperature variations in a pressure cell in order to understand the kinetic behavior of gas hydrate and the controlling factors fur the phase transition of gas hydrate below freezing. Gas hydrates were made kom guest gases ($CH_4,\;CO_2$, and their mixed-gas) and fine ice powder. We found that formation and dissociation speeds of gas hydrates were not controlled by temperature and pressure conditions alone. The results of this study suggested that pressure levels at the formation of mixed-gas hydrate determine the transient equilibrium pressure itself.

Numerical Study on the Production of Methane Hydrate by Depressurization Method (감압법을 이용한 메탄하이드레이트 생산에 대한 수치적 연구)

  • Kim, Jin-Hong;Chun, Won-Gee;Kim, Nam-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.519-523
    • /
    • 2007
  • Gas(or methane) hydrates are solid solutions when water molecules are linked through hydrogen bonding and create host lattice cavities that can enclose a large variety of guest gas molecules. The natural gas hydrate crystal may exist at low temperature above the normal freezing point of water and high pressure greater than about 30 bars. A lot of quantities of natural gas hydrates exists in the earth and many production schemes are being studied. In the present investigation, depressurization method was considered to predict the production of gas and the simulation of the two phase flow - gas and water - in porous media is being carried out. The simulation show about the fluid flow in porous media have a variety of applications in industry. Results provide the appearance of gas and water production, the pressure profile, the saturation of gas/ water/ hydrates profiles and the location of the pressure front.

  • PDF

Nozzle Effect for the Formation Enhancement of Methane Hydrate (메탄 하이드레이트 생성촉진을 위한 노즐 분사효과 연구)

  • Kim, Nam-Jin;Chun, Won-Gee
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.6
    • /
    • pp.8-14
    • /
    • 2008
  • Methane hydrate is crystalline ice-like compounds which consist of methane gas of 99% and over, and the estimated amount of gas contained in hydrates is about 1 trillion carbon Ton. Therefore, they have the potential for being a significant source for natural gas, and 1$m^3$ solid hydrates contain up to 172N$m^3$ of methane gas, depending on the pressure and temperature of production. Such large volumes make natural gas hydrates can be used to store and transport natural gas. In this study, the tests were performed on the formation of methane hydrate by a nozzle. The result showed that utilizing nozzles dramatically reduces the time in hydrate formation, the pressure after the injection is decreased to be approximately 90% of experimental pressurethe, and gas consumption is higher about 3 times than that of subcooling test.

Study on methane hydrate production using depressurization method (감압법을 이용한 메탄 하이드레이트 생산에 대한 연구)

  • Park, Sung-Seek;Kim, Nam-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.1
    • /
    • pp.34-41
    • /
    • 2010
  • Gas hydrates are solid solutions when water molecules are linked through hydrogen bonding and create host lattice cavities that can enclose many kinds of guest(gas) molecules. There are plenty of methane(gas) hydrate in the earth and distributed widely at offshore and permafrost. Several schemes, to produce methane hydrates, have been studied. In this study, depressurization method has been utilized for the numerical model due to it's simplicity and effectiveness. IMPES method has been used for numerical analysis to get the saturation and velocity profile of each phase and pressure profile, velocity of dissociation front progress and the quantity of produced gas. The values calculated for the sample length of 10m, show that methane hydrates has been dissolved completely in approximately 223 minutes and the velocity of dissociation front progress is 3.95㎝ per minute. The volume ratio of the produced gas in the porous media is found to be about 50%. Analysing the saturation profile and the velocity profile from the numerical results, the permeability of each phase in porous media is considered to be the most important factor in the two phase flow propagation. Consequently, permeability strongly influences the productivity of gas in porous media for methane hydrates.

A Study on the Phase Equilibrium Conditions of Mixture Gas Hydrates using CSMHYD (CSMHYD를 이용한 혼합가스 하이드레이트의 상평형에 대한 연구)

  • Seo, Hyang-Min;Park, Yun-Beom;Chun, Won-Gee;Kim, Nam-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.585-589
    • /
    • 2007
  • Gas hydrate is a special kind of inclusion compound that can be formed by capturing gas molecules to water lattice in high pressure and low temperature conditions. When referred to standard conditions, $1m^3$ solid hydrates contain up to $172Nm^3$ of methane gas, depending on the pressure and temperature of production, Such large volumes make natural gas hydrates can be used to store and transport natural gas. In this study, three-phase equilibrium conditions for forming methane hydrate were theoretically obtained in aqueous single electrolyte solution containing 3wt% Nacl. The results show that Nacl acts as a inhibitor, but help gases such as ethan, propane, i-butane, and n-butane reduce the hydrate formation pressure at the same temperature.

  • PDF

Tuning Behavior of (Cyclic Amines + Methane) Clathrate Hydrates and Their Application to Gas Storage (고리형 아민이 포함된 메탄 하이드레이트의 튜닝과 가스 저장 연구)

  • Ki Hun Park;Dong Hyun Kim;Minjun Cha
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.394-400
    • /
    • 2023
  • In this study, the tuning phenomena, gas storage capacity, and thermal expansion behaviors of binary (cyclopentylamine + CH4) and (cyclopropylamine + CH4) clathrate hydrates were investigated for the potential applications of clathrate hydrates to gas storage. To understand the tuning behaviors of binary (cyclopentylamine + CH4) and (cyclopropylamine + CH4) clathrate hydrates, 13C solid-state NMR spectroscopy was used, and the results confirmed that maximum tuning factors for the binary (cyclopentylamine + CH4) and (cyclopropylamine + CH4) clathrate hydrates were achieved at 0.5 mol% and 1.0 mol% of guest concentration, respectively. The gas storage capacity of binary (cyclopentylamine + CH4) and (cyclopropylamine + CH4) clathrate hydrates were also checked, and the results showed the CH4 capacity of our hydrate systems was superior to that of binary (tetrahydrofuran + CH4) and (cyclopentane + CH4) clathrate hydrates. The synchrotron diffraction patterns of these hydrates collected at 100, 150, 200, and 250 K confirmed the formation of a cubic Fd-3m hydrate. In addition, the lattice constant of clathrate hydrates with cyclopentylamine and methane were larger than that with cyclopropylamine and methane due to the effects of molecular size and shape.

Geotechnical properties of gas hydrate bearing sediments (가스 하이드레이트 부존 퇴적토의 지반공학적 물성)

  • Kim, Hak-Sung;Cho, Gye-Chun;Lee, Joo-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.151-151
    • /
    • 2011
  • Large amounts of natural gas, mainly methane, in the form of hydrates are stored on continental margins. When gas hydrates are dissociated by any environmental trigger, generation of excess pore pressure due to released free gas may cause sediment deformation and weakening. Hence, damage on offshore structures or submarine landslide can occur by gas hydrate dissociation. Therefore, geotechnical stability of gas hydrate bearing sediments is in need to be securely assessed. However, geotechnical characteristics of gas hydrates bearing sediments including small-strain elastic moduli have been poorly identified. Synthesizing gas hydrate in natural seabed sediment specimen, which is mainly composed of silty-to-clayey soils, has been hardly attempted due to their low permeability. Moreover, it has been known that hydrate loci in pore spaces and heterogeneity of hydrate growth in specimen scale play a critical role in determining physical properties of hydrate bearing sediments. In the presented study, we synthesized gas hydrate containing sediments in an instrumented oedometric cell. Geotechnical and geophysical properties of gas hydrate bearing sediments including compressibility, small-strain elastic moduli, elastic wave, and electrical resistivity are determined by wave-based techniques during loading and unloading processes. Significant changes in volume change, elastic wave, and electrical resistivity have been observed during formation and dissociation of gas hydrate. Experimental results and analyses reveal that geotechnical properties of gas hydrates bearing sediments are highly governed by hydrate saturation, effective stress, void ratio, and soil types as well as morphological feature of hydrate formation in sediments.

  • PDF

A Study on Thermodynamic Properties of Ethylene Gas Hydrate

  • Lim, Gye-Gyu
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.E1
    • /
    • pp.10-15
    • /
    • 2007
  • The gas hydrates are probably most sensitive to climate change since they are stable only under specific conditions of high pressure and low temperature. One of the main factors responsible for formation of gas hydrates is the saturation of the gases with water vapor. Quantitative phase equilibrium data and understanding of the roles of water component in the phase behavior of the heterogeneous water-hydrocarbon-hydrate mixture are of importance and of engineering value. In this study, the water content of ethylene gas in equilibrium with hydrate and water phases were analyzed by theoretical and experimental methods at temperatures between 274.15 up to 291.75 K and pressures between 593.99 to 8,443.18 kPa. The experimental and theoretical enhancement factors (EF) for the water content of ethylene gas and the fugacity coefficients of water and ethylene in gas phase were determined and compared with each other over the entire range of pressure carried out in this experiment. In order to get the theoretical enhancement factors, the modified Redlich-Kwong equation of state was used. The Peng-Robinson equations and modified Redlich-Kwong equations of state were used to get the fugacity coefficients for ethylene and water in the gas phase. The results predicted by both equations agree very well with the experimental values for the fugacity coefficients of the compressed ethylene gas containing small amount of water, whereas, those of water vapor do not in the ethylene rich gas at high temperature for hydrate formation locus.

n-Pentane & n-Hexane as Coguests of sH Hydrates in the Mixture with 2,2-Dimethylbutane and Methane

  • Lee, Jong-Won;Lu, Hailong;Moudrakovski Igor L.;Ripmeester Christopher I. RatcliffeJohn A.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.58-61
    • /
    • 2006
  • n-Pentane and n-hexane, previously regarded as non-hydrate formers, are found to form structure H hydrate in mixtures with 2,2-dimethylbutane. Even though they are thought to be too large to fit into the largest cage of the structure H hydrate, powder XRD and NMR measurements show that they form gas hydrates in mixtures with other sH hydrate former. These findings are of fundamental interest and also will impact the composition and location of natural gas hydrates and their potential as global energy resource and climate change materials.

  • PDF