최근 화석에너지가 가진 환경 및 고갈 문제들을 경감시킬 수 있는 에너지 자원으로서 가스하이드레이트가 주목을 받으며, 우리나라에서는 2005년부터 2014년까지 10개년 계획 하에 가스하이드레이트 개발사업을 진행하고 있다. 가스하이드레이트 개발사업은 수력원자력을 제외하면 사용 에너지의 대부분을 수입에 의존하고 있는 우리나라의 경제사회에 미치는 파급효과가 상당히 클 것으로 예상되지만, 성공여부는 불확실하다. 그러므로 사업의 가치평가를 사전에 수행하여 타당성을 제고하고, 효과적인 수행 전략을 제시하는 것이 매우 중요하다고 할 수 있다. 본 논문에서는 가스하이드레이트 개발사업의 가치평가를 수행하기 위해 퍼지위험분석을 실물옵션모형에 적용시킴으로써 기존의 방법론에서 측정하지 않았던 정보들을 포함시키고, 가치평가 결과에 나타나는 편의나 오류를 감소시키고자 하였다. 퍼지위험분석을 적용한 실물옵션모형은 무형요인들에 대한 판단의 모호성과 부정확성을 적당한 언어척도로 모형화함으로써 이 요인들을 명시적으로 평가하고, 재무적 성과측정치와 함께 통합될 수 있도록 해주는 장점을 가진다. 이는 의사결정자의 직관에 의해서도 부분적으로 평가가 가능하겠으나, 직관에 따른 판단은 여러 가지 요인들을 동시에 고려하여 일관성 있는 평가를 내리는 데 한계가 있을 것이다. 하지만 퍼지위험분석을 적용하면 복합적인 여러 가지 속성의 의사결정 문제가 단순화된 부분적 문제들로 분해되어 분석이 가능하게 된다. 고유가의 지속과 함께 청정에너지에 대한 시대적 요구로 인하여 에너지 자원 또는 기술 개발 사업의 필요성이 더욱더 증대되고 있다. 이 가운데 본 연구의 결과가 가스하이드레이트 개발 사업뿐 아니라, 향후 에너지 산업과 관련된 정책의사결정에 하나의 가이드라인을 제시할 수 있으리라 기대된다.
The motivation for this work was the potential of hydrophobic amino acids such as glycine, L-alanine, and L-valine to be applied as thermodynamic hydrate inhibitors (THIs). To confirm their capabilities in inhibiting the formation of gas hydrates, three-phase (liquid-hydrate-vapor) equilibrium conditions for carbon dioxide hydrate formation in the presence of 0.1 to 3.0 mol% amino acid solutions were determined in the range of 273.05 to 281.45 K and 14.1 to 35.2 bar. From quantitative analyses, the inhibiting effects of the amino acids (on a mole concentration basis) decreased in the following order: L-valine > L-alanine > glycine. The application of amino acids as THIs has several potential advantages over conventional methods. First, the environmentally friendly nature of amino acids as compared to conventional inhibitors means that damage to ecological systems and the environment could be minimized. Second, the loss of amino acids in recovery process would be considerably reduced because amino acids are non-volatile. Third, amino acids have great potential as a model system in which to investigate the inhibition mechanism on the molecular level, since the structure and chemical properties of amino acids are well understood.
지구 온난화의 대표적인 주범인 $CO_2$를 저감하기 위하여 많은 연구가 진행되고 있다. 특히 가스 하이드레이트 형성원리를 이용한 $CO_2$ 분리 및 저장 공정이 주목을 받고 있다. 본 연구는 필름형 $CO_2$ 하이드레이트의 결정성장 거동에 관하여 성장 메커니즘을 규명하였다. 다양한 압력조건에서 반회분식 교반 반응기를 이용하여 $CO_2$ 하이드레이트를 형성시켰으며 객체가스의 용해도 차이를 최소화하기 위하여 모든 실험에서 온도는 고정하였다. 공급된 가스는 순도 99.999 %의 $CO_2$ 가스를 사용하였고, CCD 카메라(Nikon DS-5M/Fi1/2M-U2)가 장착된 광학현미경을 사용하여 관찰 결과를 실시간 기록하였다. 실험에 적용되는 압력에 따라서 하이드레이트 성장형태와 성장속도는 매우 큰 차이를 보였다. 특히 2.0 MPa 이상의 압력에서 가장 큰 변화를 관찰하였으며, 이것은 $CO_2$의 농도 차이와 모세관 힘에 의한 것으로 사료된다.
본 연구에서는 가스 하이드레이트 기술을 이용하여 철강 공정 배기가스로부터 $CO_2$를 분리하는데 사용하는 여러 촉진제의 성능을 조사하였다. 이 실험에서는 $CO_2/N_2$ 혼합가스 ($CO_2/N_2$=20/80, 40/60)와 $CO_2/N_2$ 이외에 CO, $H_2$가 첨가된 Blast furnace gas (BFG) 모델 가스를 대상 가스로 사용하였다. 촉진제로는 구조 II 하이드레이트를 형성한다고 알려진 tetrahydrofuran (THF), propylene oxide, 1,4-dioxane 를 사용하였으며, 각 가스에 대하여 촉진제를 농도별로 첨가했을 때 상평형점의 변화를 측정하였다. 상평형점은 "연속" Quartz crystal microbalance (QCM) 방식을 이용하였다. 또한, Powder X-ray diffraction (PXRD) 분석을 통하여 촉진제의 첨가가 가스 하이드레이트 구조에 미치는 영향을 알아보았다.
가스 하이드레이트는 고압과 저온 조건에서 객체분자(guest molecule)인 저 분자량의 가스와 주체분자(host molecule)인 물 분자가 결합하여 고체상으로 형성된 화합물을 일컫는다. 물과 가스에 의해서 형성이 된다는 점, 포집 가스의 종류에 따라 다양한 결정구조가 형성되며 선택적으로 가스를 포획할 수 있는 장점으로 인하여 이를 지구온난화 가스 저감을 위한 산업공정에 활용하는 연구가 최근 활발히 진행되고 있다. 본 논문에서는 $CO_2$ 또는 $CO_2-N_2$ 하이드레이트에 관한 전반적인 최근 연구 동향을 파악하여 이를 실제 산업 현장에 적용하는 경우에 대한 기술적 가능성을 모색해 본다. 특히 대규모 $CO_2$가 배출되면서도 이에 해당하는 연구가 활발히 진행되지 않았던 제철 공정에 대한 적용성을 중점적으로 검토하였다.
Gas hydrates are solid solutions when water molecules are linked through hydrogen bonding and create host lattice cavities that can enclose many kinds of guest(gas) molecules. There are plenty of methane(gas) hydrate in the earth and distributed widely at offshore and permafrost. Several schemes, to produce methane hydrates, have been studied. In this study, depressurization method has been utilized for the numerical model due to it's simplicity and effectiveness. IMPES method has been used for numerical analysis to get the saturation and velocity profile of each phase and pressure profile, velocity of dissociation front progress and the quantity of produced gas. The values calculated for the sample length of 10m, show that methane hydrates has been dissolved completely in approximately 223 minutes and the velocity of dissociation front progress is 3.95㎝ per minute. The volume ratio of the produced gas in the porous media is found to be about 50%. Analysing the saturation profile and the velocity profile from the numerical results, the permeability of each phase in porous media is considered to be the most important factor in the two phase flow propagation. Consequently, permeability strongly influences the productivity of gas in porous media for methane hydrates.
Gas hydrates are ice-l ike sol id compounds that are composed of water and natural gas. All common gas hydrates belong to the three crystal structures that are composed of five polyhedral cavities formed by hydrogen bonded water molecules and stable in specific high pressure and low temperature conditions. Gas hydrates contain large amounts of organic carbon and widely occur in deep oceans and permafrost regions, and they may therefore represent a potential energy resource in the future. United States and Japan perform the national R&D programs for the commercial production of gas hydrates in 2010's. The study on gas hydrates are also important for exploration and development of natural gas in the regions where gas hydrates are accumulated and could be formed. Although their global abundance is debated, they play an important role in global climate change since methane is a 50 times more effect ive greenhouse gas than carbon dioxide. Natural gas hydrates also form a possible natural hazard if rapidly dissociated and can cause slides and slumps and in the marine environment associated tsunamis.
본 연구에서는 가스 하이드레이트 생성 시 첨가된 이온성 액체가 미치는 생성속도의 향상효과를 조사하였다. 이온성 액체로는 Hydroxyethyl-methyl-morpholinium chloride (HEMM-Cl)을 사용하였다. 메탄 하이드레이트의 상평형 곡선을 구하고 생성유도시간과 메탄가스의 소모량을 측정하였다. 20~20,000 ppm의 HEMM-Cl을 준비하여 하이드레이트가 생성될 수 있는 70 bar, 274.15 K 조건에서 실험을 수행하였다. 하이드레이트 생성 속에 대한 비교를 위해 순수한 물과 대표적인 촉진제인 sodium dodecyl sulfate를 같은 조건에서 실험하였다. 실험 결과, 이온성 액체인 HEMM-Cl은 상평형 곡선을 더 높은 압력과 낮은 온도 쪽으로 이동시켰다. 이온성 액체의 첨가 시에는 메탄 하이드레이트의 생성유도시간이 거의 나타나지 않는 것을 알 수 있었다. 메탄가스의 소모량은 모든 농도에서 향상되었고 1,000 ppm에서 가장 많은 양의 가스를 흡수하는 것으로 나타났다. 이온성 액체는 가스 하이드레이트 생성 촉진을 유도하는 것으로 나타났으며 가스저장, 수송 등의 응용기술 개발에 적용이 기대된다.
이 연구에서는 에틸렌글리콜과 염이 포함된 메탄 하이드레이트의 상평형과 형성 거동을 측정하였다. 염의 종류로는 염화나트륨(NaCl), 브롬화나트륨(NaBr), 아이오딘화나트륨(NaI)을 이용하였으며, 272~283 K의 온도 범위와 3.5~11 MPa의 압력범위에서 상평형 조건을 확인하였다. 5 wt% NaCl + 10 wt% MEG, 5 wt% NaBr + 10 wt% MEG, 5 wt% NaI + 10 wt% MEG의 순서로 메탄 하이드레이트의 억제 효과가 나타났음을 확인하였다. 에틸렌글리콜과 염이 포함된 메탄 하이드레이트의 형성 거동은 생성유도시간, 가스소모량과 성장 속도를 분석하여 확인하였다. 에틸렌글리콜과 염이 포함된 메탄 하이드레이트의 생성유도시간은 실험 조건에서 큰 차이를 보이지 않았지만, 에틸렌글리콜과 염의 첨가는 가스소모량과 성장 속도에 영향을 주었음을 확인할 수 있었다.
Piston cores retrieved from the western Ulleung Basin, East Sea were analyzed to examine the potential for hydrocarbon generation and to determine the hydrocarbon indicators. 2D multi-channel reflection seismic and Chirp data were also investigated for mapping and characterizing the geophysical hydrocarbon indicators such as BSR (bottom simulating reflector), blank zone, pock-mark etc. High organic carbon contents and sedimentation rates that suggest good condition for hydrocarbon generation. High pressure and low temperature condition, and high residual hydrocarbon concentrations are favor the formation of natural gas hydrate. In the piston cores, cracks generally oriented to bedding may indicate the gas expansion. The seismic data show several BSRs that are associated with natural gas hydrates and underlying free gas. A number of vertical to sub-vertical blank zones were well identified in the seismic sections. They often show the seismic pull-up structures, probably indicating the presence of high velocity hydrates. Numerous pockmarks were also observed in the Chirp profiles. They may indicate the presence of free gas below the hydrate stability zone as well.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.