• Title/Summary/Keyword: Gas Diffusion Layer(GDL)

Search Result 85, Processing Time 0.029 seconds

Study on the Durability Characteristics of the PEM Fuel Cells having Gas Diffusion Layer with Different Micro Porous Layer Penetration Thicknesses (기체확산층의 미세다공층 침투 깊이에 따른 고분자 전해질형 연료전지의 내구성능 저하 분석에 관한 연구)

  • Park, Jaeman;Oh, Hwanyeong;Cho, Junhyun;Min, Kyoungdoug;Lee, Eunsook;Jyoung, Jy-Young
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.3
    • /
    • pp.216-222
    • /
    • 2013
  • Durability characteristics of Gas Diffusion Layer(GDL) is one of the important issues for accomplishing commercialization of Proton Exchange Membrane Fuel Cell(PEMFC). It is strongly related to the performances of PEMFC because one of the main functions of GDL is to work as a path of fuel, air and water. When the GDL does not work on their proposed functions due to the degradation of durability, mass transfer in PEMFC is disturbed and it might cause the flooding phenomenon. Thus, investigating the durability of GDL is important and understanding the GDL degradation process is needed. In this study, electrochemical degradation with carbon corrosion is introduced. The carbon corrosion experiment is carried out with GDLs which have different MPL penetration thicknesses. After the experiment, the amount of degradation of GDL is measured with various properties of GDL such as weight, thickness and performance of the PEMFC. The degraded GDL shows loss of their properties.

Study on Performance and Durability of the Proton Exchange Membrane Fuel Cell with Different Micro Porous Layer Penetration Thickness (미세다공층의 침투깊이가 다른 기체확산층이 고분자전해질 연료전지의 성능과 내구성에 미치는 영향에 관한 연구)

  • Cho, Junhyun;Park, Jaeman;Oh, Hwanyeong;Min, Kyoungdoug;Jyoung, Jy-Young;Lee, Eunsook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.81.2-81.2
    • /
    • 2011
  • The gas diffusion layer (GDL) consists of two main parts, the GDL backing layer, called as a substrate and the micro porous layer (MPL) coated on the GDBL. In this process, carbon particles of MPL penetrates to the GDBL consequently forms MPL penetration part. In this study, the micro porous layer (MPL) penetration thickness is determined as a design parameter of the GDL which affect pore size distribution profile through the GDL inducing different mass transfer characteristics. The pore size distribution and water permeability characteristics of the GDL are investigated and the cell performance is evaluated under fully/low humidification conditions. Transient response and voltage instability are also studied. In addition, to determine the effects of MPL penetration on the degradation, the carbon corrosion stress test is conducted. The GDL that have deep MPL penetration thickness shows better performance in high current density region because of enhanced water management, however, loss of penetrated MPL parts is shown after aging and it induces worse water management characteristics.

  • PDF

Study on the Optimization of Superhydrophobic Coating for the Durability of Gas Diffusion Layer in Alkaline Fuel Cells (알카라인 연료전지 가스확산층 내구성 향상을 위한 초발수 코팅 최적화 연구)

  • Kim, Soong Yeon;Seo, Minhye;Uhm, Sunghyun
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.691-695
    • /
    • 2017
  • Optimization study was carried out to improve the durability of the gas diffusion layer (GDL) in alkaline fuel cell cathode by the use of highly stable PDMS superhydrophobic coating. Two different commercial GDLs were selected as substrates. Coating temperature and viscosity of PDMS were controlled for the stability of structure in microporous layer of GDL as well as uniform coating according to thermal characteristics of GDL. Regardless of PDMS viscosity, highly stable superhydrophobicities were obtained with both GDLs at $200^{\circ}C$. After the accelerated test, however, 28BC GDL coated with 1000 CS PDMS showed the best durability with the lowest loss of superhydrophobicity.

Preparation and Performance Evaluation of Gas Diffusion Layer Made of Carbon Compounds/Polymer Binder Composites (탄소화합물/Polymer Binder 복합체를 이용한 기체확산층 제조 및 성능 평가)

  • Lee, J.J.;Choi, Bum-Choul;Park, Y.K.;Lee, Jae-Young;Lee, Hong-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.92.2-92.2
    • /
    • 2011
  • 고분자전해질 연료전지 (PEMFC)의 가격 결정 요인 중 막 전극 접합체 (MEA)가 차지하는 비중은 약 45%정도이며, 이것을 구성하는 주요 부품인 기체 확산층 (GDL)은 carbon paper나 carbon cloth 형태가 사용되고 있다. 그렇지만 GDL을 제조하는 공정은 매우 복잡하고, 그 가격이 너무 높은 단점이 있다. 본 연구에서는 카본블랙, 흑연 등의 탄소화합물과 polymer binder를 이용하여 단순화된 공정으로 GDL을 제조하였다. 또한, GDL의 물리적 특성이 전극 성능에 미치는 영향을 분석하기 위하여 표면 morphology, 접촉각 및 표면에너지, 전기전도도, 기체투과도, porosity, pore distrivution 등을 측정하였고, 각각의 GDL 표면에 동량의 Pt 촉매를 도포하여 MEA를 제작한 후 그 성능을 평가하였다.

  • PDF

Characteristic analysis of The Catalyst Layer and Gas Diffusion Layer Model for FEMFC optimal design (FEMFC 최적설계를 위한 촉매층모델과 기체확산층 특성해석)

  • Kwon, Kee-Hong
    • Journal of IKEEE
    • /
    • v.21 no.2
    • /
    • pp.123-129
    • /
    • 2017
  • Proton Exchange Membrane Fuel Cell (FEMFC) is a strong candidate for future automobile and power generation because of its high power density, low emission and low operation temperature. The major concerns of the gas diffusion layer (GDL) inside a FEMFC is water management. The GDL is typically comprised of carbon for electrical conductivity and PTFE for Hydrophobicity. In this simulation, GDL flooding was investigated using a simplified approach method of an established equation models(Fick' Law, Darcy, Law, Stefan-Maxwell diffusion). The performance of GDL was shown using result of the inner heat, water density and oxygen density of the cell using model equations. The catalyst layer mode in FEMFC showed results of effectiveness factor, Butler-volmer and hydrogen flux density. These results are interesting because the influence of several factors has been shown and the information will be helpful for fuel cell design.

Variation of Porosity and Gas Permeability of Gas Diffusion Layers Under Compression (가스확산층의 압축에 따른 공극률 및 기체투과율의 변화)

  • Lee, Yongtaek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.8
    • /
    • pp.767-773
    • /
    • 2013
  • This study suggested the variations of porosity and gas permeability of gas diffusion layers (GDLs), which are easily deformed among the components of a highly compressed PEMFC stack. The volume change owing to compression was measured experimentally, and the variations in the porosity and gas permeability were estimated using correlations published in previous literature. The effect of polytetrafluoroethylene (PTFE) which is added to the GDLs to enhance water discharge was investigated on the variations of porosity and gas permeability. The gas permeability which strongly affects the mass transport through GDL, decreases sharply with increasing compression when the GDL has high PTFE loading. As a result, the mass transport through the pore network of GDL can be changed considerably according to the PTFE loading even with the same clamping force. The accuracy of modeling of transport phenomena through GDL can be improved due to the enhanced correlations developed based on the results of this study.

Experimental Analysis of GDL Degradation in PEM Fuel Cell (고분자전해질형 연료전지 가스확산층의 내구 성능 저하에 관한 실험적 분석)

  • Ha, Tae-Hun;Park, Jae-Man;Cho, Jun-Hyun;Min, Kyoung-Doug;Lee, Eun-Suk;Jung, Ji-Young;Kim, Do-Hun;Jin, Yong-Won;Lee, Dae-Han
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.132-132
    • /
    • 2009
  • To achieve the commercialization of PEM fuel cell, the durability problem must be solved. Recently, many researchers have focused on this durability problem and degradation studies about membrane and electrode have been reported. But durability characteristics of gas diffusion layer is not much reported yet. Durability of GDL is very important to maintain the performance of PEM fuel cell because the main function of GDL is a path of fuel and water and the GDL degradation causes the loss of the GDL function. In this study, the degradation of GDL, especially, the mechanical degradation process was investigated with the leaching test. The effect of water dissolution was observed through the test and the amount of GDL degradation was measured with various measurement methods such as weight measurement, static contact angle measurement, scanning electron microscope. After 2,000 hours test, the GDL showed structural damage and loss of hydrophobicity.

  • PDF

A Study on the Performance Analysis of Mobile Fuel Cell (모바일용 연료전지의 성능해석에 관한 연구)

  • Kim, Kwang-Soo;Choi, Jong-Pil;Jeong, Chang-Ryeol;Jang, Jae-Hyeok;Jeon, Byeong-Hee;Kim, Byeong-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.1
    • /
    • pp.115-121
    • /
    • 2008
  • In this paper, a three-dimensional computational fluid dynamic model of a proton exchange membrane fuel cell(PEMFC) with serpentine flow channel is presented. A steady state, single phase and isothermal numerical model has been established to investigate the influence of the GDL (Gas Diffusion Layer) parameters. The GDL is made of a porous material such as carbon cloth, carbon paper or metal wire mesh. For the simplicity, the GDL is modeled as a block of material having numerous pathways through which gaseous reactants and liquid water can pass. The porosity, permeability and thickness of the GDL, which are employed in the model parameters significantly affect the PEMFC performance at the high current region.

Visualization of Water Droplets in the Simple Flow Channel and Rib Geometry for Polymer Electrolyte Membrane Fuel Cells (PEMFCs) (고분자전해질형 연료전지의 단순 채널 리브 형상에서의 물방울 가시화 연구)

  • Choi, Min Wook;Kim, Han-Sang
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.4
    • /
    • pp.386-392
    • /
    • 2014
  • The effective water management in a polymer electrolyte membrane fuel cell (PEMFC) is one of the key strategies for improving cell performance and durability. In this work, an ex situ measurement was carried out to understand the water droplet behavior on the surface of gas diffusion layer (GDL) as a fundamental study for establishing novel water management. For that purpose, simplified cell including one rib and two flow channels was designed and fabricated. Using this ex situ device, the water droplet emergence through the GDL of the PEMFC was emulated to understand liquid water transport through the porous diffusion medium. Through the visualization experiment, the emergence and growth of water droplets at the channel/GDL interface are mainly observed with the surface characteristics of GDL (SGL 10BA, 24BA) and rib when the liquid water passes through the GDL and is expelled to the flow channel. It is expected that the results obtained from this study can contribute to the better understanding on the water droplet behavior (emergence and removal) in the flow channels of PEMFC.

Effect of Gas Diffusion Layer Compression and Inlet Relative Humidity on PEMFC Performance (기체확산층 압축률과 상대습도가 고분자전해질 연료전지 성능에 미치는 영향)

  • Kim, Junseob;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.68-74
    • /
    • 2021
  • Gas diffusion layer (GDL) compression is important parameter of polymer electrolyte membrane fuel cell (PEMFC) performance to have an effect on contact resistance, reactants transfer to electrode, water content in membrane and electrode assembly (MEA). In this study, the effect of GDL compression on fuel cell performance was investigated for commercial products, JNT20-A3. Polarization curve and electrochemical impedance spectroscopy was performed at different relative humidity and compression ratio using electrode area of 25 ㎠ unit cell. The contact resistance was reduced to 8, 30 mΩ·㎠ and membrane hydration was increased as GDL compression increase from 18.6% to 38.1% at relative humidity of 100 and 25%, respectively. It was identified through ohmic resistance change at relative humidity conditions that as GDL compression increased, water back-diffusion from cathode and electrolyte membrane hydration was increased because GDL porosity was decreased.