• Title/Summary/Keyword: Gap block

Search Result 179, Processing Time 0.027 seconds

A Strategy of a Gap Block Design in the CFRP Double Roller to Minimize Defects during the Product Conveyance (제품 이송 시 결함 최소화를 위한 CFRP 이중 롤러의 Gap block 설계 전략)

  • Seung-Ji Yang;Young-june Park;Sung-Eun Kim;Jun-Geol Ahn;Hyun-Ik Yang
    • Composites Research
    • /
    • v.37 no.1
    • /
    • pp.7-14
    • /
    • 2024
  • Due to the structural characteristic of a double roller, the double roller can have various deformation behaviors depending on a gap block design, even if dimensions and loading conditions for the double roller are the same. Based on this feature, we propose a strategy for designing the gap block of the carbon-fiber reinforced plastic (CFRP) double roller to minimize defects (e.g., sagging and wrinkling), which can be raised during the product conveying process, with the pursue of the lightweight design. In the suggested strategy, analysis cases are first selected by considering main design parameters and engineering tolerances of the gap block, and then deformation behaviors of these selected cases are extracted using the finite element method (FEM). Here, to obtain the optimal gap block parameters that satisfy the purpose of this study, deformation deviations in the contact area are calculated and compared using the extracted deformation behaviors. Note that the contact area in this work is located between the product and the roller. As a result, through the design method of the gap block proposed in this work, it is possible to construct the CFRP double roller that can significantly decrease the defects without changing the overall sizes of the roller. A detailed method is suggested herein, and the results are evaluated in a numerical way.

ASSESSMENT of CORE BYPASS FLOW IN A PRISMATIC VERY HIGH TEMPERATURE REACTOR BY USING MULTI-BLOCK EXPERIMENT and CFD ANALYSIS (다중블록실험과 전산유체해석을 통한 블록형 초고온가스로의 노심우회유량 평가)

  • Yoon, S.J.;Lee, J.H.;Kim, M.H.;Park, G.C.
    • Journal of computational fluids engineering
    • /
    • v.16 no.3
    • /
    • pp.95-103
    • /
    • 2011
  • In the block type VHTR core, there are inevitable gaps among core blocks for the installation and refueling of the fuel blocks. These gaps are called bypass gap and the bypass flow is defined as a coolant flows through the bypass gap. Distribution of core bypass flow varies according to the reactor operation since the graphite core blocks are deformed by the fast neutron irradiation and thermal expansion. Furthermore, the cross-flow through an interfacial gap between the stacked blocks causes flow mixing between the coolant holes and bypass gap, so that complicated flow distribution occurs in the core. Since the bypass flow affects core thermal margin and reactor efficiency, accurate prediction and evaluation of the core bypass flow are very important. In this regard, experimental and computational studies were carried out to evaluate the core bypass flow distribution. A multi-block experimental apparatus was constructed to measure flow and pressure distribution. Multi-block effect such as cross flow phenomenon was investigated in the experiment. The experimental data were used to validate a CFD model foranalysis of bypass flow characteristics in detail.

Development of a Intelligent Welding Carriage for Automation of Curved Block

  • Choi, H.B.;Moon, J.H.;Jun, W.R.;Kim, S.H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.626-630
    • /
    • 2005
  • This paper presents a novel Intelligent-Welding-Carriage (IWC) for automation of curved block in shipbuilding. The curved block is usually used in both front and back side of the ship. In curved block root gap is big, $1{\sim}7$ [mm] and inclination, $0{\sim}30$ [deg]. Since available conventional carriage type is limited to use below root gap of 3 [mm], only manual welding is employed in curved block. To adopt an IWC in curved block, it requires control of the welding conditions, i.e., voltage, current and travel speed, with respect to root gap and inclination to achieve good welding quality. In this paper, an IWC is developed for automization of welding operation to accommodate gap and inclination. Kinematics model and dynamics using Lagrangian formulation of the manipulator is introduced. IWC utilizes a database to perform accurate welding. The database is programmed based on numerous experimental test results with respect to gap, inclination, material, travel speed, weaving condition, voltage, and current. Finally, experimental result using PID control is addressed for verify the trajectory tracking accuracy of end-effector.

  • PDF

Development of a Intelligent Welding Carriage for Automation of Curved Block (곡 블록 자동화를 위한 지능형 용접 캐리지 개발)

  • Choi HeeByoung;Moon JongHyun;Jun WanLyul;Kim Sehwan
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.171-176
    • /
    • 2005
  • This paper presents a novel Intelligent-Welding-Carriage (IWC) for automation of curved block in shipbuilding. The curved block is usually used in both front and back side of the ship. In curved block root gap is big, 1-7 (mm) and inclination, 0-30 (deg). Since available conventional carriage type is limited to use below root gap of 3 (mm), only manual welding is employed in curved block. To adopt an IWC in curved block, it requires control of the welding conditions, i.e., voltage. current, weaving speed, dwell time and travel speed, with respect to root gap and inclination to achieve good welding qualify. In this paper, an IWC is developed for automization of welding operation to accommodate gap and inclination. Kinematics model and dynamics using Lagrangian formulation of the manipulator is introduced. IWC utilizes a database to perform accurate welding. The database is programmed based on numerous experimental test results with respect to gap, inclination, material, travel speed, weaving condition, voltage, and current. Finally, experimental result using PID control is addressed for verifying the trajectory tracking accuracy of end-effector.

  • PDF

A Study on the Development of Water Permeability Gap Block by Reinforced Fiber Content (보강섬유 함유량에 따른 투수성 틈새블록 개발에 관한 연구)

  • Jo, Joonho;Shin, Jung
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.661-670
    • /
    • 2022
  • In recent years, extreme rainfall and rainy seasons caused by climate change have caused river flooding and flooding damage, and it is urgent to solve economic and environmental problems in the city center due to the increase in the number of peak homes. The gap block, called the fitting block, is designed to facilitate rainwater pitching by forming a gap between the block and the block by forming a concave part and a protrusion of the block differently without the use of an existing spacer. In this study, for the production of such a gap block, the existing cement content was reduced and aramid fibers and exploration fibers, which are industrial by-products such as Goroslag fine powder and reinforcing fibers, were applied.

Development of Computing Model for the Process and Operation Interval of Reinforced Concrete Work using Web-CYCLONE (철근콘크리트 골조공사의 프로세스 및 공정 공백 산출 시뮬레이션 모형 개발)

  • Park, Sang-Min;Son, Chang-Baek;Lee, Dong-Eun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.341-343
    • /
    • 2012
  • This study introduces a method for computation of process and operation gap in the specific construction operation(i.e., RC frame construction applying a block-grouping scheme) using CYCLONE-based simulation modeling and analysis technique. Since uncertainty of construction environment exists, a thoughtful production planning is required to effectively deal with a risk resulting in schedule delay in advance. This study presents the concepts of a time delay occurred in a process level and operation level in a operation model, and a method of measuring gap-times in each level while the simulation progresses. It helps a site manager to decide how many segmentation in a construction block is suitable for eliminating unproductive time-delays under the constrained resources (e.g., laborer, equipment). A case study presents a network model representing a three segmented RC frame work, and result obtained from the simulation experiment.

  • PDF

Performance Characteristics of Automobile Cooling Fan according to Gap between Engine Block and Cooling Fan (엔진 블록과 냉각 팬의 간극에 따른 자동차 냉각 팬의 성능 특성 연구)

  • Yu, Byoung-Min;Ryu, Ki-Wahn;Ih, Kang-Duck;Lee, Myung-Han;Hong, Sung-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.92-97
    • /
    • 2009
  • The performance of cooling fan is affected by many peripheral parts, such as radiator, condenser, engine block and etc. Higher power has been requested in more confined automobile engine room. Thus, cooling performance becomes very important to remove the heat generated from the automobile engine more efficiently. In this paper, the performance of cooling fan including effects of engine block is investigated by using a fan tester based on the ASHRAE and the AMCA standards. A flow rate - gap distance curves and a flow rate - engine block constant curves are obtained from this study.

  • PDF

Characterization of Segmented Block Copolyurethane Network Based on Glycidyl Azide Polymer and Polycaprolactone

  • Min, Byoung-Sun;Ko, Seung-Won
    • Macromolecular Research
    • /
    • v.15 no.3
    • /
    • pp.225-233
    • /
    • 2007
  • To improve the poor mechanical and low-temperature properties of glycidyl azide polymer (GAP)-based propellants, the addition of binders was investigated using GAP and flexible polymer backbone-structural polycaprolactone (PCP) at various weight(wt) ratios, and varying the ratio of Desmodur N-100 pluriisocyanate (N-100) to isophorone diisocyanate (IPDI). Using Gee's theory, the solubility parameter of the PCP network was determined, in order to elucidate the physical and chemical interaction between GAP and PCP. The structure of the binder networks was characterized by measuring the cross-link densities and molecular weights between cross-links ($M_c$) obtained by a swelling experiment using Flory-Rhener theory. The thermal and mechanical properties of the segmented block copolyurethane (GAP-b-PCP) binders prepared by the incorporation of PCP into the binder recipes were investigated, along with the effect of the different curatives ratios.

Characteristics of Lightning Impulse Current of Zno Block for Transmission Line Arrester with External Gap (송전선로에 사용되는 갭형 피뢰기 소자의 뇌임펄스 전류특성)

  • Cho, Han-Goo;Yoo, Dae-Hoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.61-62
    • /
    • 2009
  • This paper describes the characteristics of lightning impulse current of ZnO block for transmission line arrester with external gap. The ageing parameters of lightning arresters ate impulse current, moisture ingress, temperature ageing and so on. Especially it is important to estimate the change of electrical characteristics by impulse current. Total energy applied to the ZnO arrester each time is $4/10{\mu}s$, 30kA and $2/20{\mu}s$, 10kA impulse current. Before and After the test, the residual voltage variation of varistors passed was below 5%. According to the test, it is thought that the ZnO arrester shows good stability with impulse current test.

  • PDF

Characteristics of Lightning Impulse Current of ZnO Block for Transmission Line Arrester with External Gap (송전선로에 사용되는 갭형 피뢰기 소자의 뇌임펄스 전류특성)

  • Cho, Han-Goo;Yoo, Dae-Hoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.458-459
    • /
    • 2007
  • This paper describes the characteristics of lightning impulse current of ZnO block for transmission line arrester with external gap. The ageing parameters of lightning arresters are impulse current, moisture ingress, temperature ageing and so on. Especially it is important to estimate the change of electrical characteristics by impulse current. Total energy applied to the ZnO arrester each time is $4/10{\mu}s$, 30kA and $2/20{\mu}s$, 10kA impulse current. Before and After the test, the residual voltage variation of varistors passed was below 5%. According to the test, it is thought that the ZnO arrester shows good stability with impulse current test.

  • PDF