• Title/Summary/Keyword: Gap amount

Search Result 457, Processing Time 0.024 seconds

Assessment of Risk Management Practices of CM Enterprise: The Need for an Enterprise-level Risk Management Framework (CM기업 현장운영 리스크 관리 실태 분석을 통한 효율적 관리 방안 제시)

  • Park, Kyungmo;Lee, Hyun Woo;Kim, Changduk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.3
    • /
    • pp.66-73
    • /
    • 2014
  • The Korean construction industry has been severely impacted by the 2008 global financial crisis, which resulted in a significant reduction in the overall contract amount. For survival, many construction management (CM) companies had to adapt a strategy of lowering bid prices to maintain their competitiveness. As a result of the strategy, companies faced a number of issues including their decreased capability in risk management. However, most risk management-related studies focused on construction risk management, yet these studies lacked consideration of enterprise-level risk management practices. To fill the gap, the objectives of the present study are (1) to investigate, the risk management practices of Korean CM companies, (2) to identify factors that determine efficient enterprise-level risk management practices, and (3) to propose a module for the development of enterprise-level risk management. Lastly, the efficiency of the proposed development module was validated by using a survey.

A Study on the Economical Analysis of the Composite Precast Concrete Method (프리캐스트 콘크리트 복합화공법의 경제성 분석에 관한 연구)

  • Yoo, Dae-Ho;Lee, Han-Bok;Ahn, Jae-Cheol;Kang, Byeung-Hee
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.113-118
    • /
    • 2007
  • In this study, we select a site adopting real composite precast concrete method. Estimating real construction cost and imaginary cost appling reinforced concrete method in the site, we compare the costs. Through using high intensity concrete and prestressed concrete, amount of concrete is reduced more than 50% but there isn't big gap in material cost. In the main construction cost of composite precast concrete method, the material cost with production cost and transportation cost are in that, joints and topping concrete are account for 90%. But in case of reinforced concrete, labor cost spent at concrete steel bar and form is account for 30%. In the cost of attached, compared with composite precast concrete method, the reinforced concrete method taken in big portion by temporary work and scaffolding is twice as much as composite precast concrete method in construction cost. Therefore, economic efficiency is excellent reducing 11% total cost of composite precast concrete method from the reinforced concrete method.

  • PDF

Study for Failure Examples of Injector, Idle Speed Actuator and Gasket in LPi System Vehicle (LPi 시스템 자동차의 인젝터, 공회전 액추에이터 및 개스킷 고장사례 연구)

  • Lee, Il-Kwon;Cho, Seung-Hyun;Kim, Han-Goo;Kim, Seung-Chul
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.3
    • /
    • pp.48-53
    • /
    • 2012
  • The purpose of this paper studies the failure cases including with system of liquefied phase injection in liquified petroleum gas vehicle. The first case, resulting with inspection the injector of LPG, it occasionally certified the injection damage phenomenon that the fuel efficiency(km/l) was decreased to 5% by carbon deposit with injector hole when the driver operates the vehicle. The second case, it certified the interference phenomenon of air flow with carbon deposit in ISA system control for idle speed of engine and throttle body suppling air into engine. As a result, the fuel efficiency was decreased 7%. The third case, the outer air during intake stroke was intermittently flowed in this gasket gap because of weaken adhesion power phenomenon for cylinder block by intake manifold gasket tearing. Consequentially, it certified the decrease for fuel efficiency to 3% by risen the amount of fuel injection as the air inflow quantity. These failure examples reduced the power performance of engine and the fuel efficiency of vehicle. It have to minimize of failure phenomenon preparing through quality management.

Application of CBD Zinc Sulfide (ZnS) Film to Low Cost Antireflection Coating on Large Area Industrial Silicon Solar Cell

  • U. Gangopadhyay;Kim, Kyung-Hea;S.K. Dhungel;D. Mangalaraj;Park, J.H.;J. Yi
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • Zinc sulfide is a semiconductor with wide band gap and high refractive index and hence promising material to be used as ARC on commercial silicon solar cells. Uniform deposition of zinc sulfide (ZnS) by using chemical bath deposition (CBD) method over a large area of silicon surface is an emerging field of research because ZnS film can be used as a low cost antireflection coating (ARC). The main problem of the CBD bath process is the huge amount of precipitation that occurs during heterogeneous reaction leading to hamper the rate of deposition as well as uniformity and chemical stoichiometry of deposited film. Molar concentration of thiorea plays an important role in varying the percentage of reflectance and refractive index of as-deposited CBD ZnS film. Desirable rate of film deposition (19.6 ${\AA}$ / min), film uniformity (Std. dev. < 1.8), high value of refractive index (2.35), low reflectance (0.655) have been achieved with proper optimization of ZnS bath. Decrease in refractive index of CBD ZnS film due to high temperature treatment in air ambiance has been pointed out in this paper. Solar cells of conversion efficiency 13.8 % have been successfully achieved with a large area (103 mm ${\times}$ 103 mm) mono-crystalline silicon wafers by using CBD ZnS antireflection coating in this modified approach.

THE EFFECT OF POLYMERIZATION TECHNIQUES ON THE MICROLEAKAGE OF COMPOMER (광중합방식이 콤포머의 변연폐쇄에 미치는 영향)

  • 조옥환;한진순;임미경;이수종
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.1
    • /
    • pp.32-40
    • /
    • 2001
  • The aim of this study was to evaluate the effect of various polymerization techniques on the microleakage of compomer restorations. Fifty extracted human premolars and molar were used and randomly divided into 5 groups. After cavity preparation, compomer (F2000$^{\circledR}$) was filled according to the manufacturer's directions. All groups, except group 5, were filled using an incremental technique. Group 1 was polymerized for 40 seconds at a continuous 485mW/$\textrm{cm}^2$ with a VIP$^{\circledR}$(Bisco, USA) light cure unit. Group 2 was polymerized for 20 seconds at 345mW/$\textrm{cm}^2$ and then for 20 seconds at 645mW/$\textrm{cm}^2$ with the VIP equation omitted light cure unit. Group 3 was polymerized at 400mW/$\textrm{cm}^2$, gradually increased to 50mW/$\textrm{cm}^2$ 10 seconds until 550mW/$\textrm{cm}^2$ was reached; total 40 seconds with a Spectrum 800$^{\circledR}$ (Dentsply Caulk, USA) light cure unit. Group 4 was polymerized for 3 seconds using an incremental technique with a Flipo$^{\circledR}$ (LOKKi, France) light cure unit. Group 5 was polymerized for 3 seconds using a bulk fill technique with the Flipo$^{\circledR}$ light cure unit. The specimens were embedded with acrylic resin, and were sectioned with diamond saws in a mesiodistal direction along the longitudinal axis of the tooth so as to pass through the center of the restoration, and three surfaces (occlusal, pulpal, and gingival) were examined with SEM. The results were as follows ; 1. Group 5 showed a significantly larger gaps compared to other groups on the gingival, occlusal, and pulpal walls. 2. All groups except group 5 had no statistically significant gap on the gingival, occlusal, and pulpal walls. 3. There was no significant correlation between the amount of enamel on the gingival and occlusal walls and polymerization shrinkage.

  • PDF

Characteristics of ionic Wind in a DC Corona Discharge in Needle-to-punched plate Geometry (침 대 중공평판전극에서 직류코로나 방전에 의한 이온풍 특성)

  • Lee, Bok-Hee;Kil, Hyeong-Joon;Eom, Ju-Hong;Ahn, Chang-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.4
    • /
    • pp.74-80
    • /
    • 2003
  • Ionic wind is produced by a corona discharge when a DC high voltage is applied across the point-to-plane gap geometry. The corona discharge phenomena have been investigated in several beneficial application fields such as electrostatic cooling, ozone generation, electrostatic precipitation and electrostatic spraying. Recently ionic wind might be used in aerodynamic, for example, heat transfer, airflow modification, and etc. In this work, in order to analyze the control behavior of the velocity and amount of ionic wind produced by the positive DC corona discharges. The ionic wind velocity was measured as a function of the applied voltage, diameter of the punched hole on plate electrode and separation between the point-to-plate electrodes. As a results, the airflow is generated from the tip of needle to the plate electrode in the needle-to-punched-plate electrode systems. The ionic wind velocity is linearly increased with an increase in applied voltage and ranges from 1 to 3 m/sec at the locations of 100-200 mm from the punched-plate.

Development of Pulsating Type Electromagnetic Hammer Drive Systems (맥동파 전자해머 구동시스템의 개발)

  • Ahn, Dong-Jun;Nam, Hyun-Do
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.269-274
    • /
    • 2016
  • This paper proposes the development of a low frequency electronic hammer drive system that is used to prevent scaling or clogging in the hopper process. The electro-mechanical hammering driving method involves the generation of vibration and impact energy. The operation principles of the electromagnetic hammer were considered by parallel/series spring coefficient analysis and the amount of kinetic energy generated was calculated from the product of the equivalent spring constant, which is coupled with the E core and the gap of between the E core and I core. In addition, the Pulsation Driving algorithm was applied to the proposed electromagnetic hammer to obtain the maximizing kinetic energy. This algorithm was then implemented by a logical AND operation process and micro-controller (atmega128) built in functions with a timer interrupt and PWM generation function. The driving circuit of the electromagnetic hammer was designed using the H-bridge type IGBT circuit. The experimental test was performed by usefulness of the developed electromagnetic hammer systems with the acceleration measurement method. The experimental result showed that the proposed system has good kinetic energy generation performance and can be applied to the hopper process.

Densification and Dielectric Properties of Yb2O3 doped (Ba1Sr1Ca)TiO3 Thick Films (Yb2O3가 첨가된 (Ba1Sr1Ca)TiO3후막의 치밀화와 유전특성)

  • Park, Sang-Man;Lee, Young-Hie;Nam, Sung-Pil;Lee, Sung-Gap
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.7
    • /
    • pp.581-586
    • /
    • 2007
  • [ $(Ba_{0.57}Sr_{0.33}Ca_{0.10})TiO_3$ ] (BSCT) powders, prepared by sol-gel method, were mixed with organic vehicle and the BSCT thick films were fabricated by the screen printing method. The structural and dielectric properties were investigated as a function of the $Yb_2O_3$ doping contents. As a result of the TG-DTA, exothermic peak was observed at around $670^{\circ}C$ due to the formation of the polycrystalline perovskite phase. All BSCT thick films showed the typical XRD patterns of a cubic polycrystalline structure. The average thickness of all BSCT thick films was about $70{\mu}m$. The grain size of the BSCT thick film doped with 0.7 mol% $Yb_2O_3$ was approximately $6.2{\mu}m$. The Curie temperature and relative dielectric constant at room temperature decreased with increasing $Yb_2O_3$ amount. Relative dielectric constant and dielectric loss of the specimen doped with 0.1 mol% $Yb_2O_3$ were 4637 and 19 % at Curie temperature, respectively.

Development of High Performance Bubble Jet Loop Heat Pipe for Hot Water Floor Heating System (온수 가열 바닥 난방 시스템용 고성능 버블젯 루프 히트파이프 개발)

  • Kim, Jong-Soo;Kwon, Yong-Ha;Kim, Jeong-Woong
    • Journal of Power System Engineering
    • /
    • v.18 no.4
    • /
    • pp.23-28
    • /
    • 2014
  • In order to increase the performance of conventional hot water floor heating system, the bubble jet loop heat pipe for the system was developed. This experiment was conducted under next conditions : Working fluid was R-134a, charging ratio was 50%. A temperature of hot water, room temperature and flow rate were $60^{\circ}C$, $15^{\circ}C$ and 0.5~1.5 kg/min, respectively. The experimental results, show that bubble jet loop heat pipe had a high effective thermal conductivity of $4714kW/m^{\circ}C$ and a sufficient heat flux of $73W/m^2$ to heat the floor to $35^{\circ}C$ in case of the 1.5 kg/min of flow rate. So the bubble jet loop heat pipe has a possibility for appling of the floor heating system. Additionally, the visualization of bubble jet loop heat pipe was performed to understand the operating principle. Bubbles made by the narrow gap between inner tube and outer tube of evaporating part generate pulsation at liquid surface of working fluid. The pulsation had slug flow and wavy flow. So working fluid circulates in the bubble jet loop heat pipe as two phase flow pattern. And large amount of heat is transferred by the latent heat from evaporating part to condensing part.

Optimized Decomposition of Ammonia Borane for Controlled Synthesis of Hexagonal Boron Nitride Using Chemical Vapor Deposition

  • Han, Jaehyu;Kwon, Heemin;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.285-285
    • /
    • 2013
  • Recently, hexagonal boron nitride (h-BN), which is III-V compound of boron and nitride by strong covalent sp2 bonds has gained great interests as a 2 dimensional insulating material since it has honeycomb structure with like graphene with very small lattice mismatch (1.7%). Unlike graphene that is semi-metallic, h-BN has large band gap up to 6 eV while providing outstanding properties such as high thermal conductivity, mechanical strength, and good chemical stability. Because of these excellent properties, hBN can potentially be used for variety of applications such as dielectric layer, deep UV optoelectronic device, and protective transparent substrate. Low pressure and atmospheric pressure chemical vapor deposition (LPCVD and APCVD) methods have been investigated to synthesize h-BN by using ammonia borane as a precursor. Ammonia borane decomposes to polyiminoborane (BHNH), hydrogen, and borazine. The produced borazine gas is a key material that is a used for the synthesis of h-BN, therefore controlling the condition of decomposed products from ammonia borane is very important. In this paper, we optimize the decomposition of ammonia borane by investigating temperature, amount of precursor, and other parameters to fabricate high quality monolayer h-BN. Synthesized h-BN is characterized by Raman spectroscopy and its absorbance is measured with UV spectrophotometer. Topological variations of the samples are analyzed by atomic force microscopy. Scanning electron microscopy and Scanning transmission Electron microscopy are used for imaging and analysis of structures and surface morphologies.

  • PDF