• Title/Summary/Keyword: Gantry Crane

Search Result 96, Processing Time 0.029 seconds

A Study on the Tracking Control of a Transfer Crane with Tire Slip (슬립을 고려한 트랜스퍼 크레인의 주행제어에 관한 연구)

  • Jeong, Ji-Hyun;Lee, Dong-Seok;Kim, Young-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.12
    • /
    • pp.1212-1219
    • /
    • 2010
  • The most important thing in the container terminal is to handle the cargo effectively in the limited time. To achieve this object, many strategies have been introduced and applied to. If we consider the technical trends and environment of the automated container terminal, it is necessary that the systems for cargo handling are equipped with more intelligent control technologies. To cope with this tendency, from the middle of the 1990's, the automated RMGC (Rail-Mounted Gantry Crane) and RTGC (Rubber-Tired Gantry Crane) have been developed and widely used to handle containers in the yards. Recently, in these cranes, the many equipments like CCD cameras and sensors are mounted to cope with the automated terminal environment. If we want to obtain more efficient handling performance, the modelling, tracking control, anti-sway system design, skew motion suppressing and complicated motion control problems must be considered in the control system design and application process. Considering these problems, in this paper, the system modelling with the tire slip and a tracking control approach are proposed. Especially, we design the tracking control system based on the 2DOF servosystem design approach to cope with undesirable disturbance input. The experiment results show the desirable performance and usefulness of the designed control system.

Modelling and Accurate Tracking Controller Design of A Transfer Crane (트랜스퍼 크레인의 모델링 및 고정도 주행제어기 설계에 관한 연구)

  • Kim, Young-Bok;Suh, Jin-Ho;Lee, Kwon-Soon
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.6 s.73
    • /
    • pp.114-122
    • /
    • 2006
  • The most important thing in the container terminal is to handle the cargo effectively in a limited time. To achieve this objective, many strategies have been introduced and applied. If we consider the automated container terminal, it is necessary that the cargo handling equipment is equipped with more intelligent control systems. From the middle of the 1990s, an automated rail-mounted gantry crane (RMGC) and rubber-tired gantry crane (RTG) have been developed and widely used to handle containers in the yards. Recently, in these cranes, equipment like CCD cameras and sensors have been mounted to cope with the automated terminal environment. In this paper, we try to support the development of more intelligent automated cranes that make the cargo handling be performed effectively in the yards. For this plant, we ought to consider modeling, tracking control, anti-sway system design, skew motion suppressionand complicated motion control and suppressing problems. In this paper, the system modeling and a tracking control approach are discussed, based on a two-degree-of-freedom (2DOF) servo-system design. From the simulation results, the good control performance of the designed control system is evaluated.

Modelling and Accurate Tracking Control of a Transfer Crane (트랜스퍼 크레인의 모델링 및 고정도 주행제어에 관한 연구)

  • Choi, Moon-Seok;Kim, Young-Bok;Suh, Jin-Ho;Lee, Kwon-Soon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.485-488
    • /
    • 2006
  • The most important thing in the container terminal is to handle the cargo effectively in the limited time. To achieve this object, many strategies have been introduced and applied to. If we consider the automated container terminal, it is necessary that the cargo handling equipments are equipped with more intelligent control systems. From the middle of the 1990's, an automated rail-mounted gantry crane(RMGC) and rubber-tired gantry crane(RTG) have been developed and widely used to handle containers in the yards. Recently, in these cranes, the many equipments like CCD cameras and sensors are mounted to cope with the automated terminal environment. In this paper, we try to support the development of more intelligent automated cranes which make the cargo handling be performed effectively in the yards. For this plant, the modelling, tracking control, anti-sway system design, skew motion suppressing and complicated motion control and suppressing problems must be considered. In this paper, the system modelling and a tracking control approach are discussed based on two-degree-of-freedom (2DOF) servosystem design.

  • PDF

A Study on the Tracking Control of a Transfer Crane : Observer Design and Experimental Study (트랜스퍼 크레인의 주행제어에 관한 연구 : 관측기 설계 및 실험적 연구)

  • Choe, Mun-Seok;Suh, Jin-Ho;Lee, Kwon-Soon;Kim, Young-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.1
    • /
    • pp.26-32
    • /
    • 2007
  • The most important thing in the container terminal is to handle the cargo effectively in the limited time. To achieve this object, many strategies have been introduced and applied to. If we consider the automated container terminal, it is necessary that the cargo handling equipments are equipped with more intelligent control systems. From the middle of the 1990's, an automated rail-mounted gantry crane(RMGC) and rubber-tired gantry crane(RTG) have been developed and widely used to handle containers in the yards. Recently, in these cranes, the many equipments like CCD cameras and sensors are mounted to cope with the automated terminal environment. In this paper, we try to support the development of more intelligent automated cranes which make the cargo handling be performed effectively in the yards. For this plant, the modelling, tracking control, anti-sway system design, skew motion suppressing and complicated motion control and suppressing problems must be considered. In this paper, the system modelling and a tracking control approach are discussed. And, we design the tracking control system incorporating an observer based on the 2DOF servosystem design approach to obtain the informations of the states. The experiment results show the usefulness of the designed control system.

A Study on the Development of Guide Line Measurement System in the Driving Condition (주행상태에서의 가이드라인 계측 시스템 개발에 관한 연구)

  • Kim, Young-Bok
    • Journal of Power System Engineering
    • /
    • v.15 no.5
    • /
    • pp.91-96
    • /
    • 2011
  • The handling ability of containers at the terminal strongly depends on the performance of the cargo handling system such as RTGC(Rubber Tired Gantry Crane) and RMGC(Rail Mounted Gantry Crane). This paper introduces a guide line measurement system on the operating condition, in which two camera are installed to detect the guide line. Because the line tracking is the basic technique for control system design of RTGC, it is necessary to develop a useful and reliable measurement system. If the displacement and angle of the RTGC relative to a guide line as the trajectory to follow is obtained, the position of RTGC is automatically calculated. Therefore, in this paper, a camera-based measurement system is introduced. The proposed measurement system is robust against light fluctuation and cracks of the guide line. This system consists of two camera and a PC which are installed at the lower side of the RTGC. Two edges of the guide line are detected from an input image taken by the cameras in the moving state, and these positions are determined in a Hough parameter space by using the Hough transformation method. From the experimental results, the accuracy and usefulness of the proposed system is evaluated by comparing other instruments.

Tracking Control System Design for the Transfer Crane : Design of Full-order Observer with Weighted $H_{\infty}$ Error Bound (트랜스퍼 크레인의 이송위치제어를 위한 서보계 설계 : 가중 $H_{\infty}$ 오차사양을 만족하는 동일차원 관측기 설계)

  • Kim, Y.B.;Jeong, H.H.;Yang, J.H.
    • Journal of Power System Engineering
    • /
    • v.12 no.6
    • /
    • pp.42-49
    • /
    • 2008
  • The most important job in the container terminal area is to handle the cargo effectively in the limited time. To achieve this object, many strategies have been introduced and applied to. If we consider the automated container terminal, it is necessary that the cargo handling equipments are equipped with more intelligent control systems. From the middle of the 1990's, an automated rail-mounted gantry crane(RMGC) and rubber-tired gantry crane(RTG) have been developed and widely used to handle containers in the yards. Recently, in these cranes, the many equipments like CCD cameras and sensors are mounted to cope with the automated terminal environment. In this paper, we try to support the development of more intelligent automated cranes which make the cargo handling be performed effectively in the yards. For this plant, the modelling, tracking control, anti-sway system design, skew motion suppressing and complicated motion control and suppressing problems must be considered. Especially, in this paper, the system modelling and tracking control approach are discussed. And, we design the tracking control system incorporating an observer based on the 2DOF servo system design approach to obtain the desired state informations. In the case of observer design, a weighted $H_{\infty}$ error bound approach for a state estimator is considered. Based on an algebraic Riccati equation(inequality) approach, a necessary and sufficient condition for the existence of a full-order estimator which satisfies the weighted $H_{\infty}$ error bound is introduced. Where, the condition for existence of the estimator is denoted by a Linear Matrix Inequality(LMI) which gives an optimized solution and observer gain. Based on this result, we apply it to the tracking control system design for the transfer crane.

  • PDF

An Optimal Control of Container Crane Using Evolution Strategy (진화전략을 이용한 컨테이너 크레인의 최적제어에 관한 연구)

  • 이영진;이권순
    • Journal of Korean Port Research
    • /
    • v.12 no.2
    • /
    • pp.217-224
    • /
    • 1998
  • During the operation of crane system in container yard, the objective is to transport the load to a goal position as quick as possible without rope oscillation. The container crane is generally operated by an expert operator, but recently an automatic control system with high speed and rapid transportation is required. Therefore, we developed an optimal controller which has to control the crane system with disturbances. In this paper, we present a design of optima 2-DOF PID controller for the control of gantry crane which has to control swing motion and trolley position. We used evolution strategy(ES) to tune the parameters of 2-DOF PID controller. It was compared with general PID controller. The computer simulations show that the proposed method has better performances than the other method.

  • PDF

Optimal Control of Gantry Crane Using Genetic Programming (유전프로그래밍에 의한 겐트리 크레인의 최적제어에 관한 연구)

  • 이영진;배종일;이권순
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1998.10a
    • /
    • pp.153-158
    • /
    • 1998
  • In this paper, we present a design of optimal 2-DOF PID controller for control of gantry crane which has to control swing motion and trolley position. For tuning the parameter of 2-DOF PID controller, we used evolution strategy(ES). During operate the crane system in yard, the goal is transporting the load to a goal position as quick as possible without rope oscillation. The crane is generally operated by an expert operator, but recently an automatic control system with high speed and rapid transportation is required. However, we developed an optimal controller which has to control the crane system with disturbance.

  • PDF

Wind Force Coefficients Computation of Gantry Crane by Wind Tunnel Experiment and Structural Analysis of the Crane (풍동실험에 의한 갠트리 크레인의 풍력계수 산출과 구조 해석)

  • Lee, Jae-Hwan;Kim, Tae-Wan;Jang, In-Geun;Han, Soon-Hung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.2
    • /
    • pp.165-170
    • /
    • 2011
  • In this paper, wind force coefficient by wind tunnel experiment is obtained to compute the accurate wind force of the gantry crane model to be used for mobile harbor ship. The first crane model was tested under 20, 30, 40, 52m/s, partially 58m/s and the wind force coefficient is about 2.0 which is very close to the suggested theoretical value. The other is the more reliable crane model and tested under 20, 30, 40m/s also giving the similar realistic wind force coefficient. Also structural analysis of crane model was performed giving the reliable stress level. Since the rolling effect is important for mobile harbor ship, the safety of the crane on the ship needs to be guaranteed. For this, using the computed reaction forces, a tie-down design is suggested which connects the crane and ship to resist the turnover motion of the crane.

Design of Human Works Model for Gantry Crane System

  • Kim, Hwan-Seong;Tran, Hoang-Son;Kim, Seoung-Ho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.08a
    • /
    • pp.102-112
    • /
    • 2004
  • In this paper, we propose a human model for analysis for human work pattern or human fault, where a gantry crane simulator is used to survey the property of human operation. From the input and output of gantry crane response, we make a human operation model by using conventional ARX identification method. For identify the human model, we assume the eight inputs and two outputs. By using the input/output data, we estimate the parameters of ARX of the human system model. For verify the proposed method, we compared the real data with the modeled data, where three kinds of work trajectory path are used.

  • PDF