• Title/Summary/Keyword: Gamma-ray visualization

Search Result 9, Processing Time 0.022 seconds

Study of the Radioactive Source Detection and the Visualization with the Stereo Radiation Detector (스테레오 기반 감마선원 탐지 및 가시화에 관한 연구)

  • Park, Gang-teak;Lee, Nam-ho;Cha, Han-ju
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.1100-1102
    • /
    • 2015
  • In the study, stereo-based of gamma-ray sources detector for the space including the gamma-ray source to scan in a raster scan method, and obtains a visible light image and the gamma-ray image. We went to retrieve and visualize the distance to source and the direction of the 3-dimension information from Stereo gamma-ray detectors. Configuration of the detector consisted of gamma-ray detecting sensor for gamma-ray Sources, pan-tilt for the scanning of the raster for detecting sources, and CCD camera for visible-light image. Implement a stereo structure of the device to measure the spatial distribution of source, the gamma-ray Detector and CCD camera for the stereo image acquisition was as each configuration 2. The gamma-ray detector and a visible light camera to revision the distribution of detection source, After performing each of the cameras of the stereo correction and shows the distribution of the gamma-ray Sources through 중첩 visible light image and the gamma-ray image. After Rectification process of Left and right image, we were derived visualization results of the stereo image.

  • PDF

Localization of hotspots via a lightweight system combining Compton imaging with a 3D lidar camera

  • Mattias Simons;David De Schepper;Eric Demeester;Wouter Schroeyers
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.3188-3198
    • /
    • 2024
  • Efficient and secure decommissioning of nuclear facilities demands advanced technologies. In this context, gamma-ray detection and imaging are crucial in identifying radioactive hotspots and monitoring radiation levels. Our study is dedicated to developing a gamma-ray detection system tailored for integration into robotic platforms for nuclear decommissioning, offering a safe and automated solution for this intricate task and ensuring the safety of human operators by mitigating radiation exposure and streamlining hotspot localization. Our approach integrates a Compton camera based 3D reconstruction algorithm with a single Timepix3 detector. This eliminates the need for a second detector and significantly reduces system weight and cost. Additionally, combining a 3D camera with the setup enhances hotspot visualization and interpretation, rendering it an ideal solution for practical nuclear decommissioning applications. In a proof-of-concept measurement utilizing a 137Cs source, our system accurately localized and visualized the source in 3D with an angular error of 1° and estimated the activity with a 3% relative error. This promising result underscores the system's potential for deployment in real-world decommissioning settings. Future endeavors will expand the technology's applications in authentic decommissioning scenarios and optimize its integration with robotic platforms. The outcomes of our study contribute to heightened safety and accuracy for nuclear decommissioning works through the advancement of cost-effective and efficient gamma-ray detection systems.

Development of High-Sensitivity Detection Sensor and Module for Spatial Distribution Measurement of Multi Gamma Sources (감마선원의 공간분포 가시화 및 3D모델링을 위한 운용환경 개발)

  • Song, Keun-Young;Lim, Ji-Seok;Choi, Jung-Huk;Yuk, Young-Ho;Hwang, Young-Gwan;Lee, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.702-704
    • /
    • 2017
  • In case of dismantling of nuclear power generation facility or radiation accident, the accurate information of gammaray source is essential for rapid decontamination. In order to more efficiently represent the position of the gamma ray to be removed, we create a spatial domain based on the real image. And we can perform decontamination of gamma-ray source more quickly by expressing the distribution of radiation source. The developed gamma ray imaging device overlaps with the visible image after gamma - ray detection and provides only two - dimensional image, but it does not show the distance information to the source. In this paper, we have developed a operation environment using the 3D visualization model for reporting effective decontamination operation.

  • PDF

The Visualization and the Fast Detection of Gamma Radiation Source using Stereo Image Processing (영상처리기반 감마선원 거리탐지 고속화 및 가시화 연구)

  • Hwang, Young-Gwan;Lee, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.10
    • /
    • pp.2001-2006
    • /
    • 2016
  • The stereo radiation detection system detects the gamma source and acquires two dimensional left and right images for gamma source and visible objects using the detection result. And then the system measures the distance to the radiation source from the system in 3D space using stereo vision algorithm. In this paper, we implemented the fast detection algorithm for gamma source from the system in 3D space to reduce the detection time with image processing algorithms. Additionally, the system's performance is verified through experiments on gamma irradiation facilities. As a result, if the fast detection algorithm applied to the system, we can confirm that the detection system represents a 35% better performance than the conventional detection method that is full scanning to acquire the stereo image. We also have visualized a gamma source distribution through a 3D monitor using the stereo vision algorithm in order to provide the information of radiation spatial distribution to the user efficiently.

The Study for Improved Efficiency of the Detection of Radiation Sources Distribution using Image Processing (영상처리기반 감마선 분포탐지 효율 개선에 관한 연구)

  • Hwang, Young-gwan;Lee, Nam-ho;Kim, Jong-yeol;Jeong, Sang-hun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.780-781
    • /
    • 2016
  • The stereo radiation detection system detects gamma ray source and measures the two dimensional distribution image based on the detection result. Then the system is implemented to measure the distance to the radiation source from the system in 3D space using stereo vision algorithm. In this paper, we reduced the time for a gamma-ray scan space detection through image processing algorithms. In addition, it combines radiation and visible light images. Then we conducted a study for improving the distribution of gamma-ray detection efficiency through the stereo calibration using a 3D visualization. As a result, we obtain an improved detection time by more than 30% and have acquired a visible image with a 3D monitor.

  • PDF

Development of Three-Dimensional Gamma-ray Camera (방사선원 3차원 위치탐지를 위한 방사선 영상장치 개발)

  • Lee, Nam-Ho;Hwang, Young-Gwan;Park, Soon-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.486-492
    • /
    • 2015
  • Radiation source imaging system is essential for protecting of radiation leakage accidents and minimizing damages from the radioactive materials, and is expected to play an important role in the nuclear plant decommissioning area. In this study, the stereoscopic camera principle was applied to develop a new radiation imaging device technology that can extract the radiation three-dimensional position information. This radiation three-dimensional imaging device (K3-RIS) was designed as a compact structure consisting of a radiation sensor, a CCD camera, and a pan-tilt only. It features the acquisition of stereoscopic radiation images by position change control, high-resolution detection by continuous scan mode control, and stereoscopic image signal processing. The performance analysis test of K3-RIS was conducted for a gamma-ray source(Cs-137) in radiation calibration facility. The test result showed that a performance error with less than 3% regardless of distances of the objects.

DEVELOPMENT OF POINT KERNEL SHIELDING ANALYSIS COMPUTER PROGRAM IMPLEMENTING RECENT NUCLEAR DATA AND GRAPHIC USER INTERFACES

  • Kang, Sang-Ho;Lee, Seung-Gi;Chung, Chan-Young;Lee, Choon-Sik;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.3
    • /
    • pp.215-224
    • /
    • 2001
  • In order to comply with revised national regulationson radiological protection and to implement recent nuclear data and dose conversion factors, KOPEC developed a new point kernel gamma and beta ray shielding analysis computer program. This new code, named VisualShield, adopted mass attenuation coefficient and buildup factors from recent ANSI/ANS standards and flux-to-dose conversion factors from the International Commission on Radiological Protection (ICRP) Publication 74 for estimation of effective/equivalent dose recommended in ICRP 60. VisualShieid utilizes graphical user interfaces and 3-D visualization of the geometric configuration for preparing input data sets and analyzing results, which leads users to error free processing with visual effects. Code validation and data analysis were performed by comparing the results of various calculations to the data outputs of previous programs such as MCNP 4B, ISOSHLD-II, QAD-CGGP, etc.

  • PDF

Sentinel lymph node mapping using tri-modal human serum albumin conjugated with visible dye, near infrared fluorescent dye and radioisotope

  • Kang, Se Hun;Kim, Seo-il;Jung, So-Youn;Lee, Seeyoun;Kim, Seok Won;Kim, Seok-ki
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.1 no.1
    • /
    • pp.62-73
    • /
    • 2015
  • We developed an evans blue-indocyanine green-$^{99m}Tc$-human serum albumin conjugate for sentinel lymph node mapping and we describe its unique potential usage for clinical implications. This conjugate has combined the strengths of visible blue dye, near-infrared fluorescence and radioisotope into one single conjugate without any additional weakness/disadvantage. All the components of evans blue-indocyanine green-$^{99m}Tc$-human serum albumin are safe and of low cost, and they have already been clinically used. This conjugate was stable in the serum, it showed a long retention time in the lymphatic system and the lymph nodes showed a much higher signal-to-noise ratio after the conjugate was injected intradermally into the paw of mice. Both the single-photon emission computed tomography and near-infrared fluorescent images of the mice were successfully obtained at the same time as the excised sentinel lymph nodes showed blue color. The visual color, near-infrared fluorescence and gamma ray from this agent could be complementary for each other in all the steps of sentinel lymph node sampling: exploring and planning sentinel lymph node before excision with visualization of the exact sentinel lymph node location during an operation. Therefore, the triple modal agent will possibly be very ideal for sentinel lymph node mapping because of the high signal-to-noise ratio for non-invasive imaging and its complementary multimodal nature, easy preparation and safety. It is promising for clinical applications and it may have great advantages over the traditional single modal methods.

Performance Estimation of Large-scale High-sensitive Compton Camera for Pyroprocessing Facility Monitoring (파이로 공정 모니터링용 대면적 고효율 콤프턴 카메라 성능 예측)

  • Kim, Young-Su;Park, Jin Hyung;Cho, Hwa Youn;Kim, Jae Hyeon;Kwon, Heungrok;Seo, Hee;Park, Se-Hwan;Kim, Chan Hyeong
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • Compton cameras overcome several limitations of conventional mechanical collimation based gamma imaging devices, such as pin-hole imaging devices, due to its electronic collimation based on coincidence logic. Especially large-scale Compton camera has wide field of view and high imaging sensitivity. Those merits suggest that a large-scale Compton camera might be applicable to monitoring nuclear materials in large facilities without necessity of portability. To that end, our research group have made an effort to design a large-scale Compton camera for safeguard application. Energy resolution or position resolution of large-area detectors vary with configuration style of the detectors. Those performances directly affect the image quality of the large-scale Compton camera. In the present study, a series of Geant4 Monte Carlo simulations were performed in order to examine the effect of those detector parameters. Performance of the designed large-scale Compton camera was also estimated for various monitoring condition with realistic modeling. The conclusion of the present study indicates that the energy resolution of the component detector is the limiting factor of imaging resolution rather than the position resolution. Also, the designed large-scale Compton camera provides the 16.3 cm image resolution in full width at half maximum (angular resolution: $9.26^{\circ}$) for the depleted uranium source considered in this study located at the 1 m from the system when the component detectors have 10% energy resolution and 7 mm position resolution.