• Title/Summary/Keyword: Gamma-ray spectra

Search Result 124, Processing Time 0.031 seconds

Development of Fiber-optic Radiation Sensor Using LYSO Scintillator for Gamma-ray Spectroscopy (LYSO 섬광체를 이용한 감마선 분광용 광섬유 방사선 센서의 개발)

  • Han, Ki-Tek;Yoo, Wook-Jae;Shin, Sang-Hun;Jeon, Da-Yeong;Park, Jang-Yeon;Park, Byung-Gi;Lee, Bong-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.287-292
    • /
    • 2012
  • A fiber-optic radiation sensor was fabricated using a sensing probe, a plastic optical fiber, a photomultiplier tube, and a multichannel analyzer for gamma-ray spectroscopy. As an inorganic scintillator of the sensing probe, a LYSO crystal was used. In this study, we obtained the relationship between the photon counts of the fiber-optic radiation sensor and the activity of the radioactive isotope. In addition, the gamma-ray energy spectra were also measured using a fiber-optic radiation sensor to discriminate species of gamma-ray emitters.

Fabrication of Fiber-optics Detector for Measuring Radioactive Waste (방사성 오염도 측정을 위한 광섬유 검출기 제작)

  • Kim, Jeong-Ho;Joo, Koan-Sik
    • Journal of IKEEE
    • /
    • v.19 no.3
    • /
    • pp.282-287
    • /
    • 2015
  • In this study, an optical fiber detector was constructed by using a Ce:GAGG scintillator, optical fiber, and photomultiplier. The single crystal size of the scintillator was set to $3{\times}3{\times}20mm^3$ after simulating the counting efficiency of gamma rays in the scintillator by using the MCNPX code. The constructed detector used the standard gamma ray sources $^{137}Cs$ and $^{133}Ba$ to measure radiation and analyze the spectral characteristics of gamma rays. The resulting trend curve showed excellent linearity with an R-squared value of 0.99741, and the detector characteristics were found to vary 2% or less with distance based on comparison with the MCNPX value. Furthermore, the spectroscopic analysis of the gamma ray energy from the single-ray and mixed-ray sources showed that $^{137}Cs$ had its peak energy at 662 keV, and $^{133}Ba$ had at 356 keV. It seems that if the fiber-optics detector is used, working hours and exposure of worker can be reduced.

Experimental investigation of zinc sodium borate glass systems containing barium oxide for gamma radiation shielding applications

  • Aboalatta, A.;Asad, J.;Humaid, M.;Musleh, H.;Shaat, S.K.K.;Ramadan, Kh;Sayyed, M.I.;Alajerami, Y.;Aldahoudi, N.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3058-3067
    • /
    • 2021
  • Sodium zinc borate glasses doped with dysprosium and modified with different concentrations of barium oxide (0-50 mol %) were fabricated using the melting quenching technique. The structural properties of the prepared glass systems were characterized using XRD and FTIR methods. The absorption spectra of the prepared glasses were measured to determine their energy gap and their related optical properties. The density of the glasses and other physical parameters were also reported. Additionally, with the help of Photon Shielding and Dosimetry (PSD) software, we investigated the radiation shielding parameters of the prepared glass systems at different energy values. It was found that an increase in the density of the glasses by increasing the concentration of BaO significantly improved the gamma ray shielding ability of the samples. For practical results, a compatible irradiation set up was designed to check the shielding capability of the obtained glasses using a gamma ray source at 662 keV. The experimentally obtained results strongly agreed with the data obtained by PDS software at the same energy. These results demonstrated that the investigated glass system is a good candidate for several radiation shielding applications when comparing it with other commercial shielding glasses and concretes.

Radiation mechanism of gamma-ray burst prompt emission

  • Uhm, Z. Lucas;Zhang, Bing
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.49.3-50
    • /
    • 2015
  • Synchrotron radiation of relativistic electrons is an important radiation mechanism in many astrophysical sources. In the sources where the synchrotron cooling timescale is shorter than the dynamical timescale, electrons are cooled down below the minimum injection energy. It has been believed that such fast-cooling electrons have a power-law distribution in energy with an index -2, and their synchrotron radiation has a photon spectral index -1.5. On the other hand, in a transient expanding astrophysical source, such as a gamma-ray burst (GRB), the magnetic field strength in the emission region continuously decreases with radius. Here we study such a system, and find that in a certain parameter regime, the fast-cooling electrons can have a harder energy spectrum. We apply this new physical regime to GRBs, and suggest that the GRB prompt emission spectra whose low-energy photon spectral index has a typical value -1 could be due to synchrotron radiation in this moderately fast-cooling regime.

  • PDF

Application of peak based-Bayesian statistical method for isotope identification and categorization of depleted, natural and low enriched uranium measured by LaBr3:Ce scintillation detector

  • Haluk Yucel;Selin Saatci Tuzuner;Charles Massey
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3913-3923
    • /
    • 2023
  • Todays, medium energy resolution detectors are preferably used in radioisotope identification devices(RID) in nuclear and radioactive material categorization. However, there is still a need to develop or enhance « automated identifiers » for the useful RID algorithms. To decide whether any material is SNM or NORM, a key parameter is the better energy resolution of the detector. Although masking, shielding and gain shift/stabilization and other affecting parameters on site are also important for successful operations, the suitability of the RID algorithm is also a critical point to enhance the identification reliability while extracting the features from the spectral analysis. In this study, a RID algorithm based on Bayesian statistical method has been modified for medium energy resolution detectors and applied to the uranium gamma-ray spectra taken by a LaBr3:Ce detector. The present Bayesian RID algorithm covers up to 2000 keV energy range. It uses the peak centroids, the peak areas from the measured gamma-ray spectra. The extraction features are derived from the peak-based Bayesian classifiers to estimate a posterior probability for each isotope in the ANSI library. The program operations were tested under a MATLAB platform. The present peak based Bayesian RID algorithm was validated by using single isotopes(241Am, 57Co, 137Cs, 54Mn, 60Co), and then applied to five standard nuclear materials(0.32-4.51% at.235U), as well as natural U- and Th-ores. The ID performance of the RID algorithm was quantified in terms of F-score for each isotope. The posterior probability is calculated to be 54.5-74.4% for 238U and 4.7-10.5% for 235U in EC-NRM171 uranium materials. For the case of the more complex gamma-ray spectra from CRMs, the total scoring (ST) method was preferred for its ID performance evaluation. It was shown that the present peak based Bayesian RID algorithm can be applied to identify 235U and 238U isotopes in LEU or natural U-Th samples if a medium energy resolution detector is was in the measurements.

Computational Astrophysics: Connecting Laboratory Experiments to Observations

  • Kwak, Kyujin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.65.5-66
    • /
    • 2017
  • In the history of astronomy, observed data were interpreted very frequently based upon data measured at laboratories. For example, all the spectroscopic observations were understood via spectroscopic measurements on nuclei, atoms, and molecules. Recently, computational astrophysics plays a role of bridging experimental data to observations, in particular via numerical modeling of complex astronomical phenomena. This presentation focuses on computational nuclear astrophysics that connects experimental data on nuclei to high-energy observation data obtained by X-ray and gamma-ray telescopes. As an example case, X-ray burst will be discussed. In this phenomenon, observed X-ray light curves and spectra can be modeled by stellar evolution calculations that take nuclear reactions of rare isotopes as input information. This presentation also works as an introduction to the following presentation that will provide more detailed discussion on the experimental aspect of X-ray burst.

  • PDF

Identification of Pb-Zn ore under the condition of low count rate detection of slim hole based on PGNAA technology

  • Haolong Huang;Pingkun Cai;Wenbao Jia;Yan Zhang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1708-1717
    • /
    • 2023
  • The grade analysis of lead-zinc ore is the basis for the optimal development and utilization of deposits. In this study, a method combining Prompt Gamma Neutron Activation Analysis (PGNAA) technology and machine learning is proposed for lead-zinc mine borehole logging, which can identify lead-zinc ores of different grades and gangue in the formation, providing real-time grade information qualitatively and semi-quantitatively. Firstly, Monte Carlo simulation is used to obtain a gamma-ray spectrum data set for training and testing machine learning classification algorithms. These spectra are broadened, normalized and separated into inelastic scattering and capture spectra, and then used to fit different classifier models. When the comprehensive grade boundary of high- and low-grade ores is set to 5%, the evaluation metrics calculated by the 5-fold cross-validation show that the SVM (Support Vector Machine), KNN (K-Nearest Neighbor), GNB (Gaussian Naive Bayes) and RF (Random Forest) models can effectively distinguish lead-zinc ore from gangue. At the same time, the GNB model has achieved the optimal accuracy of 91.45% when identifying high- and low-grade ores, and the F1 score for both types of ores is greater than 0.9.

Fabrication and Performance of Microcolumnar CsI:Tl onto Silicon Photomultiplier (실리콘광증배관 기반의 미세기둥 구조 CsI:Tl 제작 및 평가)

  • Park, Chan-Jong;Kim, Ki-Dam;Joo, Koan-Sik
    • Journal of IKEEE
    • /
    • v.20 no.4
    • /
    • pp.337-343
    • /
    • 2016
  • This study conducted the gamma ray spectroscopic analysis of the microcolumnar CsI:Tl deposited onto the SiPMs using thermal evaporation deposition. The SEM measured thickness of microcolumnar CsI:Tl and of its individual columns. From the SEM observation, the measured thickness of CsI:Tl were $450{\mu}m$ and $600{\mu}m$. The gamma ray spectroscopic properties of microcolumnar CsI:Tl, $450{\mu}m$ and $600{\mu}m$ thick deposited onto the SiPMs were analyzed using standard gamma ray sources $^{133}Ba$ and $^{137}Cs$. The spectroscopic analysis of microcolumnar CsI:Tl deposited onto the SiPMs included the measurements of response linearity over the $^{137}Cs$ gamma ray intensity; and gamma ray energy spectrum. Furthermore from the gamma ray spectrum measurement of $^{133}Ba$ and $^{137}Cs$, $450{\mu}m$ thick CsI:Tl showed good efficiency when measured with $^{133}Ba$ and $600{\mu}m$ thick CsI:Tl was highly efficient when measured with $^{137}Cs$.

Detection of gamma irradiated South Sea cultured pearls (감마선 조사된 남양진주의 검지)

  • Choi, Hyun-Min;Lee, Bo-Hyun;Kim, Young-Chool
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.1
    • /
    • pp.36-41
    • /
    • 2012
  • We have been performed on $Co^{60}$ ${\gamma}$-ray irradiation of South Sea cultured pearls, with the absorbed dose of 0.1~100 kGy at room temperature. In addition, it was investigated electron paramagnetic resonance (EPR) and amino acid analysis (AAA) for detection of Gamma irradiated South Sea cultured pearls. It was observed that the irradiated South Sea cultured pearls revealed additional free radical peak such as $CO_2^-$, at a g-factor of $2.001{\pm}0.002$ in EPR spectra. From the amino acid analysis (AAA), it was shown that some of amino acid in the protein of the nacre destroyed after ${\gamma}$-ray; glutamic acid residue by 11.43 %, alanine by 3.11 %, and histidine by 43.75 %. It was useful to detect the irradiated South Sea cultured pearls by EPR measurement in our study.

Fabrication and Optical Characteristics of CdS Quantum Dot Structures in Aqueous Solution Using a Gamma-ray Irradiation Technique (감마선을 이용한 수용액상의 CdS 양자점 제조 및 광학적 특성)

  • Jeang, Eun-Hee;Lee, Jae-Hoon;Yim, Sang-Youp;Lee, Chang-Youl;Choi, Young-Soo;Choi, Joong-Gill;Park, Seung-Han
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.3
    • /
    • pp.249-253
    • /
    • 2004
  • CdS semiconductor quantum dot (QD) structures in aqueous solution are fabricated by using a gamma-ray irradiation technique and their optical absorption spectra are investigated. Cadmium sulfate solution, 2-mercaptoethanol solution, and reducing agent $e^{-}_{aq}$ are employed to produce CdS molecules, leading to CdS quantum dots. The measured linear absorption spectra before and after g-ray irradiation clearly show exciton peaks between 300 nm and 400 nm, which indicate the formation of CdS QD's. It is also observed that the exciton peaks are red-shifted with increasing the g-ray irradiation time from 5 min to 15 min. Therefore, it is concluded that the mean QD sizes can be systematically controlled with the dosage of the g-ray irradiation.