• Title/Summary/Keyword: Gamma-ray

Search Result 1,785, Processing Time 0.032 seconds

Comparison of the Stability of Poly-γ-Glutamate Hydrogels Prepared by UV and γ-Ray Irradiation

  • Park, Sang-Joon;Uyama, Hiroshi;Kwak, Mi-Sun;Sung, Moon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.7
    • /
    • pp.1078-1082
    • /
    • 2019
  • Poly-${\gamma}$-glutamate (${\gamma}$-PGA) has various applications due to its desirable characteristics in terms of safety and biodegradability. Previous studies have been conducted on ${\gamma}$-PGA hydrogels produced by ${\gamma}$-ray irradiation, but these hydrogels have proved unstable in solutions. This study was conducted to enable the ${\gamma}$-PGA hydrogel to maintain a stable form in solutions. The ${\gamma}$-PGA mixture for UV-irradiation was prepared with a cross-linker (N,N,N-trimethyl-3-[(2-methylacryloyl)amino]propan-1-aminium). Both ${\gamma}$-PGA hydrogels' characteristics, including stability in solutions, were examined. The UV-irradiated ${\gamma}$-PGA hydrogel maintained a stable form during the nine weeks of the study, but the ${\gamma}$-ray irradiated hydrogel dissolved after one week.

Monitoring of Gamma-ray Bright Quasars 3C279 and 1510-089 at 22, 43 and 86GHz using KVN Single Dish Telescopes

  • Baek, Jun-Hyun;Lee, Sang-Sung;Byun, Do-Young;Yang, Jee-Hye;Han, Myoung-Hee;Sohn, Bong-Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.240.2-240.2
    • /
    • 2012
  • AGN(Active Galactic Nucleus) consists of a supermassive black hole located at its center, an accretion disk around the black hole, and bipolar jets. Since May 2011, we have performed the MOGABA(Monitoring Of GAmma-ray Bright AGN) project for observing gamma-ray bright AGN once a week at multifrequencies using KVN(Korean VLBI Network) 21m radio telescopes. The MOGABA project is the observations for measuring the degree of polarization, polarization angle, and total flux of about 20 AGN at 22, 43 and 86GHz. By this project, we are able to investigate polarization characteristics, spectral index, and variation of rotation measure at radio wavelengths of gamma-ray bright AGN and to study possible relation between gamma-ray flares and magnetic field structure change in AGN. According to previous research, gamma-ray flares of some AGN are coincident with large changes in angle of linear polarization. In this paper we report the preliminary results of linear polarization and total flux at 22, 43, 86GHz of gamma-ray bright quasars 3C279 and 1510-089 showing noticeable variation of total flux at 22GHz in late 2011, and discuss possible correlation with gamma ray light curves.

  • PDF

On the Nature of the Gamma-ray Bursts

  • Hong, Kyung-Ai;Kim, Sug-Whan;Kim, Tu-Hwan
    • Journal of Astronomy and Space Sciences
    • /
    • v.4 no.2
    • /
    • pp.107-127
    • /
    • 1987
  • Review of the $\gamma$-ray burst phenomena are presented. History of the $\gamma$-ray bursts, characteristics, and three radiation mechanisms of thermal bremsstrahlung, thermal synchrotron, and inverse Compton scattering processes are considered.

  • PDF

Feasibility Study of Diffusion Film for the Light Guide of Gamma Ray Imaging System

  • Cha, Hyemi;Min, Eungi;Lee, Kisung;Jung, Young-Jun;Lee, Hakjae
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.2
    • /
    • pp.124-128
    • /
    • 2017
  • A light guide improves the spatial resolution of a gamma ray imaging system by diffusing the scintillation light. Similarly, light diffusion film, which has been applied to flat-panel-display engineering, spreads the light from the light guide panel. In this study, we adopted light diffusion film for the light guide of a gamma ray imaging system, and evaluated its diffusion characteristics. We compared the light diffusion performance of the film to an ordinary acrylic plate. As a result, the diffusion film widely spreads scintillation light. As for the thickness of the light guide, we acquired more distinct images with three films overlapped than with an acrylic plate. We expect light diffusion film to be a promising candidate for light guides in gamma ray imaging systems.

Sterilization Effects of $\gamma-ray$ and Ozone on Microoganisms Contaminated in Angelica keiskei Powde (신선초 분말에 오염시킨 미생물에 대한 감마선과 오존의 살균효과)

  • 권오진;박순연;김광훈;이현자;변명우
    • Journal of Food Hygiene and Safety
    • /
    • v.11 no.3
    • /
    • pp.221-225
    • /
    • 1996
  • For the purpose of improving hygienic quality of health-foods, sterilization effects of ${\gamma}$-ray and ozone on microoganisms associated with food cultured in the media and contaminated in Angelica keiskei powder were investigated. Ozone was immersed in water and sprayed in air, on the concentration of 3 mg liter-1 at an air flow rate of 5 liter min-3. Test strains cultured in the media completely inhibited by ${\gamma}$-ray at irradiation doses of 0.25~2 kGy. In the case of ozone, test bacteria inactivated after treatment of 10~20 minutes, but test mold, Aspergillus flavus was not effective. Strains contaminated in Angelica keiskei powder completely inhibited by ${\gamma}$-ray at irradiation doses of 2.5~7.5 kGy. However, when the powder was sprayed with ozonized air for 10hours, Bacillus subtilis and Staphylococcus aureus among five strains were eliminated.

  • PDF

Modeling and Simulation for Transient Pulse Gamma-ray Effects on Semiconductor Devices (반도체 소자의 과도펄스감마선 영향 모델링 및 시뮬레이션)

  • Lee, Nam-Ho;Lee, Seung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1611-1614
    • /
    • 2010
  • The explosion of a nuclear weapon radiates a gamma-ray in the form of a transient pulse. If the gamma-ray introduces to semiconductor devices, much Electron-Hole Pairs(EHPs) are generated in depletion region of the devices[7]. as a consequence of that, high photocurrent is created and causes upset, latchup and burnout of semiconductor devices[8]. This phenomenon is known for Transient Radiation Effects on Electronics(TREE), also called dose-rate effects. In this paper 3D structure of inverter and NAND gate device was designed and transient pulse gamma-ray was modeled. So simulation for transient radiation effect on inverter and NAND gate was accomplished and mechanism for upset and latchup was analyzed.

What we have learned about Gamma-ray bright AGNs using the iMOGABA program

  • Lee, Sang-Sung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.45.1-45.1
    • /
    • 2017
  • A Korean VLBI Network Key Science Program, the Interferometric Monitoring of Gamma-ray Bright AGNs (iMOGABA) program continues to aim at revealing the origins of the gamma-ray flares that are often detected in active galactic nuclei (AGNs). Here in this presentation, we would like to present what we have learned about the Gamma-ray bright AGNs based on the recent results of the Korean VLBI Network Key Science Program: the iMGOABA. The results will include a) the source properties of the whole samples obtained from a single-epoch observation, and b) some of scientific highlights for the iMOGAGBA on specific sources. From those highlighted works, we find that the Gamma-ray bright AGNs become fainter at higher frequencies, yielding optically thin spectra at mm wavelengths. Based on the studies on specific sources, taking into account the synchrotron self-absorption model of the relativistic jet, we estimated the magnetic field strength in the mas emission region during the observing period.

  • PDF

Region-wise evaluation of gamma-ray exposure dose in decontamination operation after a nuclear accident

  • Jeong, Hae Sun;Hwang, Won Tae;Han, Moon Hee;Kim, Eun Han;Lee, Jo Eun;Lee, Cheol Woo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2652-2660
    • /
    • 2021
  • The gamma-ray exposure doses in decontamination operation after a nuclear accident were evaluated with a consideration of various geometrical conditions and specific gamma-ray energies. The calculation domain is organized with three residence types and each form is divided into two kinds of geometrical arrangements. The position-wise air KERMA values were calculated with an assumption of evenly distributed gamma-ray source based on Monte Carlo radiation transport analysis using the MCNP code. The radioactivity is initially set to be unity to be multiplied by the deposition value measured in the actual accident condition. The workforce data set depending on the target object was determined by modifying the Fukushima report. The external exposure doses for decontamination workers were derived from the calculated KERMA values and the workforce analysis. These results can be used to efficiently determine the workforce required by the characteristics of the area and the structure to be decontaminated within the dose limits.

Plasmid DNA damage by neutron and ${\gamma}$-ray in the presence of BSH (BSH 존재시 중성자 및 ${\gamma}$-ray 조사에 따른 plasmid DNA의 손상)

  • Chun, Ki-Jung;Seo, Won-Sook
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.2
    • /
    • pp.65-68
    • /
    • 2006
  • In this study, the extent of plasmid DNA damage was observed according to concentration of BSH(Boron Sulfhydryl Hydride) and irradiation doses of neutron and ${\gamma}$-ray. The plasmid used was both pBR 322 (2870 bp) and ${\Phi}X174$ RF(5386 bp) DNA. Plasmid DNA damage by irradiation in the presence of BSH was analyzed by agarose gel electrophoresis. In the neutron experiment, DNA damage of both plasmid DNAs was increased according to increasing the concentration of BSH and neutron doses. But in the ${\gamma}$-ray experiment, there appeared no dose dependency as compared to the neutron experiment. The extent of the plasmid DNA damage in the presence of BSH was somewhat different according to irradiation by neutron or ${\gamma}$-ray.

Gamma-ray Emission from Globular Clusters

  • Tam, Pak-Hin T.;Hui, Chung Y.;Kong, Albert K. H.
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • Over the last few years, the data obtained using the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope has provided new insights on high-energy processes in globular clusters, particularly those involving compact objects such as MilliSecond Pulsars (MSPs). Gamma-ray emission in the 100 MeV to 10 GeV range has been detected from more than a dozen globular clusters in our galaxy, including 47 Tucanae and Terzan 5. Based on a sample of known gammaray globular clusters, the empirical relations between gamma-ray luminosity and properties of globular clusters such as their stellar encounter rate, metallicity, and possible optical and infrared photon energy densities, have been derived. The measured gamma-ray spectra are generally described by a power law with a cut-off at a few gigaelectronvolts. Together with the detection of pulsed γ-rays from two MSPs in two different globular clusters, such spectral signature lends support to the hypothesis that γ-rays from globular clusters represent collective curvature emission from magnetospheres of MSPs in the clusters. Alternative models, involving Inverse-Compton (IC) emission of relativistic electrons that are accelerated close to MSPs or pulsar wind nebula shocks, have also been suggested. Observations at >100 GeV by using Fermi/LAT and atmospheric Cherenkov telescopes such as H.E.S.S.-II, MAGIC-II, VERITAS, and CTA will help to settle some questions unanswered by current data.