• 제목/요약/키워드: Gamma transmission

검색결과 171건 처리시간 0.021초

Experimental Investigation of Clay Fly Ash Bricks for Gamma-Ray Shielding

  • Mann, Harjinder Singh;Brar, Gurdarshan Singh;Mann, Kulwinder Singh;Mudahar, Gurmel Singh
    • Nuclear Engineering and Technology
    • /
    • 제48권5호
    • /
    • pp.1230-1236
    • /
    • 2016
  • This study aims to determine the effect of fly ash with a high replacing ratio of clay on the radiation shielding properties of bricks. Some interaction parameters (mass attenuation coefficients, half value layer, effective atomic number, effective electron density, and absorption efficiency) of clay fly ash bricks were measured with a NaI(Tl) detector at 661.6 keV, 1,173.2 keV, and 1,332.5 keV. For the investigation of their shielding behavior, fly ash bricks were molded using an admixture to clay. A narrow beam transmission geometry condition was used for the measurements. The measured values of these parameters were found in good agreement with the theoretical calculations. The elemental compositions of the clay fly ash bricks were analyzed by using an energy dispersive X-ray fluorescence spectrometer. At selected energies the values of the effective atomic numbers and effective electron densities showed a very modest variation with the composition of the fly ash. This seems to be due to the similarity of their elemental compositions. The obtained results were also compared with concrete, in order to study the effect of fly ash content on the radiation shielding properties of clay fly ash bricks. The clay fly ash bricks showed good shielding properties for moderate energy gamma rays. Therefore, these bricks are feasible and eco-friendly compared with traditional clay bricks used for construction.

Effect of Al Content on Phase Transformation of Rapidly Solidified Binary Ti-Al Alloys

  • Oh, Chang-Sup;Kim, Sang-Wook;Han, Chang-Suk
    • 한국재료학회지
    • /
    • 제27권1호
    • /
    • pp.8-11
    • /
    • 2017
  • Binary Ti-Al alloys containing 50 to 60 atomic percent aluminum are rapidly solidified by hammer anvil method under an argon atmosphere. Constituent phases in each alloy are identified by X-ray diffractometry and microstructures of the alloys are investigated using a transmission electron microscope. In alloys with aluminum content between 50 and 54 percent, a second phase exists besides TiAl(${\gamma}$); this second phase is identified as $Ti_3Al$(${\alpha}2$). The ${\alpha}2$ phase is observed in two types of morphology. One is as fine lamellar alternating with ${\gamma}$ and the other is as a particle. It is concluded that the existence of a metastable phase with the morphologies stated above should arise from a higher quenching rate attained by the hammer anvil method as compared to the conventional roll or splat-quench method. Implications of the above observation are discussed with respect to the phase relations in the Ti-Al binary system; these implications are still controversial in many respects.

γ-ray Radiation Induced Synthesis and Characterization of α-Cobalt Hydroxide Nanoparticles

  • Kim, Sang-Wook;Kwon, Bob-Jin;Park, Jeong-Hoon;Hur, Min-Goo;Yang, Seung-Dae;Jung, Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권4호
    • /
    • pp.910-914
    • /
    • 2010
  • A novel synthetic route has been developed to prepare $\alpha$-cobalt hydroxide with intercalated nitrate anions. It was successfully synthesized by $\gamma$-ray irradiation under simple conditions, i.e., air atmosphere, without base. Under $\gamma$-ray irradiation, it leads to the formation of layered cobalt hydroxynitrate compounds which have small crystalline size and have the role of a generator of hydroxyl anion. Structural and morphological characterizations were performed by using power X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and high resolution transmission electron microscopy (HR-TEM). The component and thermal stability of the sample were respectively measured by Fourier transform infrared (FT-IR) spectroscopy, elemental analysis, and thermal analyses, including thermogravimetry (TG) and differential thermal analysis (DTA).

Development of Sustainable Releasing Micro Formulation System using γ-Irradiation Technique to Control Phytophthora Blight Disease

  • Park, Hae-Jun;Kim, Hwa-Jung;Kim, Dong Ho
    • 방사선산업학회지
    • /
    • 제5권4호
    • /
    • pp.305-311
    • /
    • 2011
  • We introduced a novel sustainable slow-releasing agrochemical formulation, a biopolymer bound to silica, for controlling plant diseases. The formulation was obtained through the following process. Curdlan, sodium silicate ($Na_2SiO_3$) and isopropyl alcohol were dissolved in DDW (Deionized-distilled water). The resultant solution was then irradiated using a $^{60}Co$ ${\gamma}$-irradiator (150 TBq of capacity; ACEL, Canada) at KAERI. The resultant solution was treated with phosphorous acid ($H_3PO_3$). Finally, we obtained a novel biopolymer-silica microsized formulation containing phosphorous acid ($H_3PO_3$) from the solution. The morphology of the complex was characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM and TEM images revealed that the curdlan-silica formulation has a particle size ranging from 1 to $3{\mu}m$ with high stability. We also detected that $H_3PO_3$ was distributed within the formulation through energy dispersive X-ray spectroscopy (EDX) analysis. $H_3PO_3$ was sustain-released from the formulation in water. Based on our results, it seems effectively that one or two applications of the formulation during a cropping season will assist in controlling various plant diseases.

Norfloxacin Release from Polymeric Micelle of Poly($\gamma$-benzyl L-glutamate)/Poly(ethylene oxide)/Poly($\gamma$-benzyl L-glutamate)/ Block Copolymer

  • 나재운;정영일;조종수
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권9호
    • /
    • pp.962-967
    • /
    • 1998
  • Block copolymers consisting of poly(rbenzyl L-glutamate) (PBLG) as the hydrophobic part and poly(ethylene oxide) (PEO) as the hydrophilic part were synthesized and characterized. Polymeric micelles of the block copolymers (abbreviated GEG) were prepared by a dialysis method. The GEG block copolymers were associated in water to form polymeric micelles, and the critical micelle concentration (CMC) values of the block copolymers decreased with increasing PBLG chain length in the block copolymers. Transmission electron microscopy (TEM) observations revealed polymeric micelles of spherical shapes. From dynamic light scattering (DLS) study, sizes of polymeric micelles of GEG-1, GEG-2, and GEG-3 copolymer were 106.5±59.2 nm, 79.4±46.0 nm, and 37.9±13.3 nm, respectively. The drug loading contents of GEG-1, GEG-2 and GEG-3 polymeric micelles were 12.6, 11.9, and 11.0 wt %, respectively. These results indicated that the drugloading contents were dependent on PBLG chain length in the copolymer; the longer the PBLG chain length, the more the drug-loading contents. Release of norfloxacin (NFX) from the nanoparticles was slower in higher loading contents of NFX than in lower loading contents due to the hydrophobic interaction between PBLG core and NFX.

Performance of 3D printed plastic scintillators for gamma-ray detection

  • Kim, Dong-geon;Lee, Sangmin;Park, Junesic;Son, Jaebum;Kim, Tae Hoon;Kim, Yong Hyun;Pak, Kihong;Kim, Yong Kyun
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2910-2917
    • /
    • 2020
  • Digital light processing three-dimensional (3D) printing technique is a powerful tool to rapidly manufacture plastic scintillators of almost any shape or geometric features. In our previous study, the main properties of light output and transmission were analyzed. However, a more detailed study of the other properties is required to develop 3D printed plastic scintillators with expectable and reproducible properties. The 3D printed plastic scintillator displayed an average decay time constants of 15.6 ns, intrinsic energy resolution of 13.2%, and intrinsic detection efficiency of 6.81% for 477 keV Compton electrons from the 137Cs γ-ray source. The 3D printed plastic scintillator showed a similar decay time and intrinsic detection efficiency as that of a commercial plastic scintillator BC408. Furthermore, the presented estimates for the properties showed good agreement with the analyzed data.

Radiation protective qualities of some selected lead and bismuth salts in the wide gamma energy region

  • Sayyed, M.I.;Akman, F.;Kacal, M.R.;Kumar, A.
    • Nuclear Engineering and Technology
    • /
    • 제51권3호
    • /
    • pp.860-866
    • /
    • 2019
  • The lead element or its salts are good radiation shielding materials. However, their toxic effects are high. Due to less toxicity of bismuth salts, the radiation shielding properties of the bismuth salts have been investigated and compared to that of lead salts to establish them as a better alternative to radiation shielding material to the lead element or its salts. The transmission geometry was utilized to measure the mass attenuation coefficient (${\mu}/{\rho}$) of different salts containing lead and bismuth using a high-resolution HPGe detector and different energies (between 81 and 1333 keV) emitted from point sources of $^{133}Ba$, $^{57}Co$, $^{22}Na$, $^{54}Mn$, $^{137}Cs$, and $^{60}Co$. The experimental ${\mu}/{\rho}$ results are compared with the theoretical values obtained through WinXCOM program. The theoretical calculations are in good agreement with their experimental ones. The radiation protection efficiencies, mean free paths, effective atomic numbers and electron densities for the present compounds were determined. The bismuth fluoride ($BiF_3$) is found to have maximum radiation protection efficiency among the selected salts. The results showed that present salts are more effective for reducing the intensity of gamma photons at low energy region.

Investigation of gamma radiation shielding properties of polyethylene glycol in the energy range from 8.67 to 23.19 keV

  • Akhdar, H.;Marashdeh, M.W.;AlAqeel, M.
    • Nuclear Engineering and Technology
    • /
    • 제54권2호
    • /
    • pp.701-708
    • /
    • 2022
  • The mass attenuation coefficients (μm) of polyethylene glycol (PEG) of different molecular weights (1000-200,000) were measured using single-beam photon transmission. The X-ray fluorescent (XRF) photons from Zinc (Zn), Zirconium (Zr), Molybdenum (Mo), Silver (Ag) and Cadmium (Cd) targets were used to determine the attenuation of gamma radiation of energy range between 8.67 and 23.19 keV in PEG samples. The results were compared to theoretical values using XCOM and Monte Carlo simulation using Geant4 toolkit which was developed to validate the experiment at those certain energies. The mass attenuation coefficients were then used to compute the effective atomic numbers, electron density and half value layers for the studied samples. The outcomes showed good agreement between experimental and simulated results with those calculated theoretically by XCOM within 5% deviation. The PEG 1000 sample showed slightly higher μm value compared with the other samples. The dependence of the photon energy and PEG composition on the values of μm and HVL were investigated and discussed. In addition, the values of Zeff and Neff for all PEG samples behaved similarly in the given photon energy range, and they decreased as the photon energy increased.

침강 장-흐름 분획법을 이용한 CdS 양자점 입자의 특성 분석 (Characterization of CdS-quantum dot particles using sedimentation field-flow fractionation (SdFFF))

  • 최재영;김도균;정의창;권해두;이승호
    • 분석과학
    • /
    • 제28권1호
    • /
    • pp.33-39
    • /
    • 2015
  • CdS 양자점 입자는 특정 파장의 빛을 방출하는 반도체 나노 결정으로 이러한 광학적 특성 때문에 질병 진단 시약, 광학기술, 미디어 산업 및 태양전지와 같은 다양한 분야에서 응용되는 물질이다. 방출하는 빛의 색은 입자의 크기에 의존하기 때문에 CdS 양자점 입자의 크기 및 크기분포를 정확하게 분석하는 것이 필요하다. 본 연구에서는 CdS 양자점 입자를 감마-선 조사법(${\gamma}$-ray irradiation method)을 이용하여 합성하고, 크기 및 크기 분포도를 결정하기 위하여 침강 장-흐름 분획법 (SdFFF)를 이용하였다. 침강 장-흐름 분획법을 이용한 CdS 양자점 입자의 정확한 분석을 위하여 분석조건의 최적화(유속, 외부장 세기, field-programming)에 대하여 조사되었다. 투과 전자 현미경(transmission electron microscopy, TEM)으로 확인된 단일 입자의 크기는 ~4 nm 였으며, 단일 입자의 응집으로 생성된 2차 입자 크기의 평균은 159 nm로 확인되었다. 첨가된 입자 안정제의 농도가 증가할수록 CdS 양자점 입자의 크기가 감소하는 경향성을 확인하였다. 침강 장-흐름 분획법, 투과 전자 현미경, 그리고 동적 광 산란법(dynamic light scattering, DLS)으로 결정된 CdS 양자점 크기는 각각 126, 159, 그리고 152 nm 였다. 본 연구의 결과로 침강 장-흐름 분획법은 비교적 넓은 크기분포를 갖는 다양한 종류의 무기입자의 크기 및 크기 분포도를 결정하는데 유용한 방법임을 확인하였다.

검출기 측정 용적에 따른 Dosimetric Leaf Gap 변화와 정확성 검증에 대한 연구 (Assessment of Dosimetric Leaf Gap According to Measuring Active Volume of Detector)

  • 김대현
    • 한국방사선학회논문지
    • /
    • 제16권7호
    • /
    • pp.863-870
    • /
    • 2022
  • DLG (Dosimetric Leaf Gap)와 투과계수는 방사선치료계획 시스템에서 MLC 모델링의 중요 매개변수이다. 본 연구에서는 측정 용적이 다른 검출기를 이용하여 HD-MLC의 DLG와 투과계수를 측정하였고, DLG의 최적화를 통해 방사선 치료계획의 정확성을 평가하였다. 용적이 작은 Semiflux3D, MicroDiamond 검출기로 Dynamic Sweeping Gap 방법을 통해 DLG를 측정하였다. 측정된 DLG 값을 최적화할 수 있도록 10개의 방사선치료계획을 생성하고 QA결과와 비교하였다. 6, 8, 10 MV에서 Semiflux3D로 측정한 DLG는 0.76, 0.83, 0.85 mm 였고, MicroDiomond로 측정한 DLG는 0.78. 0.86, 0.9 mm 였다. 방사선치료계획 시스템에서 검출기로 측정한 DLG와 최적화된 DLG 값으로 생성한 10개의 치료계획을 Postal dosimetry로 QA하여 감마분석 하였다. 6 MV 광자선의 감마분석결과 2 mm/2% 기준에서 DLG 0.78 mm는 평균 94.3%였고, DLG 1.15 mm는 평균 98.4%였다. 10 MV 광자선에서도 DLG 0.9 mm는 평균 91.2%, DLG 1.25 mm는 97.6%였다. HD-MLC의 사용은 방사선치료계획 시스템에 정확한 모델링이 완성되어야 한다. DLG 값을 검출기로 측정하여 임상에 사용할 수 있지만, DLG 값의 최적화가 이루어진다면 환자에게 더 유용한 방사선 치료를 전달할 수 있을 것이다.