• Title/Summary/Keyword: Gamma Camera

Search Result 291, Processing Time 0.042 seconds

A Study of Digitalizing Analog Gamma Camera Using Gamma-PF Board (Gamma-PF 보드를 이용한 아날로그 감마카메라의 디지털화 연구)

  • Kim, Hui-Jung;So, Su-Gil;Bong, Jeong-Gyun;Kim, Han-Myeong;Kim, Jang-Hwi;Ju, Gwan-Sik;Lee, Jong-Du
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.4
    • /
    • pp.351-360
    • /
    • 1998
  • Digital gamma camera has many advantages over analog gamma camera. These include convenient quality control, easy calibration and operation, and possible image quantitation which results in improving diagnostic accuracies. The digital data can also be utilized for telemedicine and picture archiving and communication system. However, many hospitals still operate analog cameras and have difficult situation to replace them with digital cameras. We have studied a feasibility of digitalizing an analog gamma camera into a digital camera using Gamma-PF interface board. The physical characteristics that we have measured are spatial resolution, sensitivity, uniformity, and image contrast. The patient's data obtained for both analog and digital camera showed very similar image quality. The results suggest that it may be feasible to upgrade an analog camera into a digital gamma camera in clinical environments.

  • PDF

Investigation of a blind-deconvolution framework after noise reduction using a gamma camera in nuclear medicine imaging

  • Kim, Kyuseok;Lee, Min-Hee;Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2594-2600
    • /
    • 2020
  • A gamma camera system using radionuclide has a functional imaging technique and is frequently used in the field of nuclear medicine. In the gamma camera, it is extremely important to improve the image quality to ensure accurate detection of diseases. In this study, we designed a blind-deconvolution framework after a noise-reduction algorithm based on a non-local mean, which has been shown to outperform conventional methodologies with regard to the gamma camera system. For this purpose, we performed a simulation using the Monte Carlo method and conducted an experiment. The image performance was evaluated by visual assessment and according to the intensity profile, and a quantitative evaluation using a normalized noise-power spectrum was performed on the acquired image and the blind-deconvolution image after noise reduction. The result indicates an improvement in image performance for gamma camera images when our proposed algorithm is used.

The Evaluation of Usefulness of Pixelated Breast-Specific Gamma Imaging in Thyroid scan (Pixelated Breast-Specific Gamma Imaging(BSGI) 감마 카메라를 이용한 갑상선 검사의 유용성 평가)

  • Jung, Eun-Mi;Seong, Ji-Hye;Yoo, Hee-Jae
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.90-93
    • /
    • 2011
  • Purpose: A Pixelated BSGI gamma camera has features to enhance resolution and sensitivity and minimize the distance between detector and organs by narrow FOV. Therefore, it is known as useful device to examine small organs such as thyroid, parathyroid and gall bladder. In general, when we would like to enlarge the size of images and obtain high resolution images by gamma camera in nuclear medicine study, we use pinhole collimator. The purpose of this study is to evaluate the usefulness of Pixelated BSGI gamma camera and to compare to it using pinhole collimator in thyroid scan which is a study of typical small organs. Materials and methods: (1) The evaluation of sensitivity and spatial resolution: We measured sensitivity and spatial resolution of Pixelated BSGI with LEHR collimator and Infinia gamma camera with pinhole collimator. The sensitivity was measured by point source sensitivity test recommended by IAEA. We acquired images considering dead time in BSGI gamma camera for 100 seconds and used $^{99m}TcO4-\;400{\mu}Ci$ line source. (2) The evaluation of thyroid phantom: The thyroid phantom was filled with $^{99m}TcO4-$. After set 300 sec or 100 kcts stop conditions, we acquired images from both pixelated BSGI gamma camera and Infinia gamma camera with LEHR collimator. And we performed all thyroid studies in the same way as current AMC's procedure. Results: (1) the result of sensitivity: As a result, the sensitivity and spatial resolution of pixelated BSGI gamma camera were better than Infinia's. The sensitivities of pixelated BSGI and Infinia gamma camera were $290cps/{\mu}Ci$ and $350cps/{\mu}Ci$ respectively. So, the sensitivity of pixelated BSGI was 1.2 times higher than Infinia's (2) the result of thyroid phantom: Consequently, we confirmed that images of Pixelated BSGI gamma camera were more distinguishable between hot and cold spot compared with Infinia gamma camera. Conclusion: A pixelated BSGI gamma camera is able to shorten the acquisition time. Furthermore, the patients are exposed to radiation less than before by reducing amount of radiopharmaceutical doses. Shortening scan time makes images better by minimizing patient's breath and motion. And also, the distance between organ and detector is minimized because detector of pixelated BSGI gamma camera is small and possible to rotate. When patient cannot move at all, it is useful since device is feasible to move itself. However, although a pixelated BSGI gamma camera has these advantages, the effect of dead time occurs over 2000 cts/s since it was produced only for breast scan. So, there were low concentrations in organ. Therefore, we should consider that it needs to take tests to adjust acquisition time and amount of radiopharmaceutical doses in thyroid scan case with a pixelated BSGI gamma camera.

  • PDF

Development of Gamma Camera System for Small Animal Imaging and Environmental Radiation Detection (소동물 영상화 및 환경 방사선 검출을 위한 감마카메라 개발)

  • Baek, Cheol-Ha
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.2
    • /
    • pp.475-481
    • /
    • 2014
  • The aim of this work was to develop the gamma camera system for small animal gamma imaging and environmental radiation monitoring imaging using a parallel hole collimator and pinhole collimator. The small gamma camera system consists of a CsI(Tl) scintillation crystal with 6 mm in thickness and $50{\times}50mm$ in area coupled with a Hamamatsu H8500C PSPMT, are resistive charge divider, pre-amplifiers, charge amplifiers, nuclear instrument modules (NIMs), an analog to digital converter and a computer for control and display. We have developed a radiation monitoring system composed of a combined pinhole gamma camera and a charge-coupled devices (CCD) camera. The results demonstrated that the parallel hole collimator and pinhole collimator gamma camera designed in this study could be utilized to perform small animal imaging and environmental radiation monitoring system. Consequently in this paper, we proved that our gamma detector system is reliable for a gamma camera which can be used as small animal imaging and environmental radiation monitoring system.

Spatial resolution and natural image quality assessment evaluation of gamma camera image using pinhole collimator in lutetium-yttrium oxyorthosilicate scintillation detector

  • Kyuseok Kim;Youngjin Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2567-2571
    • /
    • 2023
  • Scintillator materials are widely used in the medical and industrial fields for imaging systems using gamma cameras. In this study, image evaluation is performed by modeling a gamma camera system based on a lutetium-yttrium oxyorthosilicate (LYSO) scintillation detector using a pinhole collimator that can improve the spatial resolution. A LYSO detector-based gamma camera system is modeled using a Monte Carlo simulation tool. The geometric concept of the pinhole collimator is designed using various magnification factors, and the spatial resolution is measured using the acquired source image. To evaluate the resolution, the full width at half maximum (FWHM) and natural image quality assessment (NIQE), a no-reference-based parameter, are used. We confirm that the FWHM and NIQE values decrease simultaneously when the diameter of the pinhole collimator increases. Additionally, we confirm that the spatial resolution improves as the magnification factor increases under the same pinhole diameter condition. Particularly, a 0.57 mm FWHM value is obtained using the modeled gamma camera system with a LYSO scintillation detector. In conclusion, our results demonstrate that a pinhole collimator with a LYSO scintillation detector is a promising gamma camera imaging system.

Long-Term Extrinsic Uniformity Analysis of Gamma Cameras (감마카메라의 중장기 외인성 균일도 분석)

  • Yoon-Jae Kim;Woo-Young Jung;Dong-Hoon Lee
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.27 no.1
    • /
    • pp.36-41
    • /
    • 2023
  • Purpose The long-term trend of extrinsic uniformity by type of gamma camera was analyzed, and the factors affecting uniformity were investigated. Based on this, the purpose was to predict the life of the gamma camera, pay attention to factors that affect uniformity, and obtain better quality images. Materials and methods Four of the gamma cameras in operation at a senior general hospital in Seoul were selected and the trend of extrinsic uniformity from the first operation date to the present was analyzed. In order to minimize various factors affecting uniformity, a detailed analysis was conducted by calculating the monthly and annual average of the uniformity values. Results Two Symbia E gamma cameras from SIEMENS, one Symbia Evo Excel gamma camera, and one Symbia Intevo16 gamma camera were selected and analyzed. The uniformity of Symbia E1 (2012 warehousing) changed unevenly, and the uniformity of Symbia E2 (2014 warehousing) changed according to the replacement cycle of 57Co sheet sources. The uniformity of Symbia Evo Excel (received in 2017) and Symbia Intevo 16 (received in 2017) was constant compared to Symbia E. Conclusion The extrinsic uniformity of the gamma camera gradually increased over time. However, there was a difference in uniformity for each type of gamma camera, and there was a change in uniformity in which the cause could not be accurately identified. In order to improve the quality of the image, it is necessary to periodically check changes in uniformity and minimize factors that affect uniformity.

  • PDF

Fast non-local means noise reduction algorithm with acceleration function for improvement of image quality in gamma camera system: A phantom study

  • Park, Chan Rok;Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.719-722
    • /
    • 2019
  • Gamma-ray images generally suffer from a lot of noise because of low photon detection in the gamma camera system. The purpose of this study is to improve the image quality in gamma-ray images using a gamma camera system with a fast nonlocal means (FNLM) noise reduction algorithm with an acceleration function. The designed FNLM algorithm is based on local region considerations, including the Euclidean distance in the gamma-ray image and use of the encoded information. To evaluate the noise characteristics, the normalized noise power spectrum (NNPS), contrast-to-noise ratio (CNR), and coefficient of variation (COV) were used. According to the NNPS result, the lowest values can be obtained using the FNLM noise reduction algorithm. In addition, when the conventional methods and the FNLM noise reduction algorithm were compared, the average CNR and COV using the proposed algorithm were approximately 2.23 and 7.95 times better than those of the noisy image, respectively. In particular, the image-processing time of the FNLM noise reduction algorithm can achieve the fastest time compared with conventional noise reduction methods. The results of the image qualities related to noise characteristics demonstrated the superiority of the proposed FNLM noise reduction algorithm in a gamma camera system.

Recent Development in Low Dose Nuclear Medicine Gamma Camera Imaging (저선량 핵의학 감마카메라 영상장치의 최근 발전)

  • Hwang, Kyung Hoon;Lee, Byeong-il;Kim, Yongkwon;Lee, Haejun;Sun, Yong Han
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.4
    • /
    • pp.123-127
    • /
    • 2015
  • Recently, new gamma camera systems enabling low radiation dose imaging have been developed. We reviewed the recent development of these low dose gamma camera systems including high sensitivity detectors, device structures, noise reduction filters, efficient image reconstruction algorithms, low dose protocols, and so on. It is expected that further technological advances reduce both radiation dose and imaging time in gamma camera imaging especially for radiation-sensitive patients such as pediatric patients.

Performance evaluation of noise reduction algorithm with median filter using improved thresholding method in pixelated semiconductor gamma camera system: A numerical simulation study

  • Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.439-443
    • /
    • 2019
  • To improve the noise characteristics, software-based noise reduction algorithms are widely used in cadmium zinc telluride (CZT) pixelated semiconductor gamma camera system. The purpose of this study was to develop an improved median filtering algorithm using a thresholding method for noise reduction in a CZT pixelated semiconductor gamma camera system. The gamma camera system simulated is a CZT pixelated semiconductor detector with a pixel-matched parallel-hole collimator and the spatial resolution phatnom was designed with the Geant4 Application for Tomography Emission (GATE). In addition, a noise reduction algorithm with a median filter using an improved thresholding method is developed and we applied our proposed algorithm to an acquired spatial resolution phantom image. According to the results, the proposed median filter improved the noise characteristics compared to a conventional median filter. In particular, the average for normalized noise power spectrum, contrast to noise ratio, and coefficient of variation results using the proposed median filter were 10, 1.11, and 1.19 times better than results using conventional median filter, respectively. In conclusion, our results show that the proposed median filter using improved the thresholding method results in high imaging performance when applied in a CZT semiconductor gamma camera system.

A CCD Camera Lens Degradation Caused by High Dose-Rate Gamma Irradiation (고 선량율 감마선 조사에 따른 렌즈의 열화)

  • Cho, Jai-Wan;Lee, Joon-Koo;Hur, Seop;Koo, In-Soo;Hong, Seok-Boong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1450-1455
    • /
    • 2009
  • Assumed that an IPTV camera system is to be used as an ad-hoc sensor for the surveillance and diagnostics of safety-critical equipments installed in the in-containment building of the nuclear power plant, an major problem is the presence of high dose-rate gamma irradiation fields inside the one. In order to uses an IPTV camera in such intense gamma radiation environment of the in-containment building, the radiation-weakened devices including a CCD imaging sensor, FPGA, ASIC and microprocessors are to be properly shielded from high dose-rate gamma radiation using the high-density material, lead or tungsten. But the passive elements such as mirror, lens and window, which are placed in the optical path of the CCD imaging sensor, are exposed to a high dose-rate gamma ray source directly. So, the gamma-ray irradiation characteristics of the passive elements, is needed to test. A CCD camera lens, made of glass material, have been gamma irradiated at the dose rate of 4.2 kGy/h during an hour up to a total dose of 4 kGy. The radiation induced color-center in the glass lens is observed. The degradation performance of the gamma irradiated lens is explained using an color component analysis.