• Title/Summary/Keyword: Gametogenesis

Search Result 83, Processing Time 0.037 seconds

Studies on the Gonadal Development and Gametogenesis of the Granulated Ark, Tegillarca granosa (Linnee) (꼬막, Tegillarca granosa ( Linne ) 의 생식소발달 및 생식세포형성에 관한 연구)

  • 이주하
    • The Korean Journal of Malacology
    • /
    • v.13 no.1
    • /
    • pp.55-64
    • /
    • 1997
  • 꼬막, Tegillarca granosa은 우리나라 남해 및 서해안 일대에서 서식하는 중요한 수산자원 중의 하나이지만, 이에 대한 생물학적 기초연구는 거의 없는 실정이다. 따라서 1995년 2월부터 1996년 1월까지 전남 벌교연안에서 채집한 꼬막의 생식소발달, 생식세포형성과정 및 생식주기를 조사하였다. 1. 꼬막은 자웅이체이면서 난생이고, 생식소는 내장낭의 간중장선을 싸고 있는 결합조직으로부터 족부의 근육층까지 분포한다.2. 미분화간층직과 호산성 과립세포들이 초기 활성기의 소낭에 풍부하게 나타나기 시작하여 완숙기에는 거의 없어지는 것으로 보아, 이들은 생식소 및 생식세포형성과 발달에 영향을 공급하는 영향세포로 생각된다.3. 생식소발달, 생식세포형성과정, 조직분화과정 및 세포학적 특성에 따라, 이들의 생식주기를 초기 활성기, 완숙기, 부분 방출기, 방출 및 비활성기 등으로 구분할 수 있다. 4. 방란 및 방정은 수온 2$0^{\circ}C$정도되는 6월하순부터 시작되고, 주산란시기는 수온이 23-24$^{\circ}C$정도 되는 7-8월이며, 완숙란의 크기는 50-60$\mu\textrm{m}$이다.5. 비활성기는 9월에서 이듬해 4월까지 지속되는 비교적 긴 기간이며, 초기 활성기도 비교적 길어 1월에서 5월까지 지속되는 반면, 후기활성, 완숙 및 방출기는 비교적 짧아, 5월에서 8월까지 모두 완료된다.6. 비만도의 월별 변화는 생식소의 발달, 생식주기 및 수온과 밀접한 관계가 있다.7. 사용된 재료 433개체 중 1개체가 자웅동체현상을 나타내었다.

  • PDF

Histological Study on the Reproductive Cycle of Potamocorbula amurensis (Bivalvia: Corbulidae) (계화도조개 (Potamocorbula amurensis)의 생식주기에 관한 조직학적 연구)

  • LEE Ju Ha
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.5
    • /
    • pp.629-636
    • /
    • 1999
  • Gonadal development, gametogenesis, reproductive cycle, egg-diameter and composition, condition factor, and the first sexual maturity of the clam, Potamocorbula amurensis were investigated by histological observation. Samples were collected monthly from the tidal flat of Moonpo, Puan-gun, Chollabuk-do, west coast of Korea from November 1996 to October 1997. P. amurensis is dioecious and oviparous. The gonads were composed of a number of gametogenic follicles. The oogonia and fully ripe oocytes were $9\~12\mu$m and $50\~60\mu$m in diameter, respectively. Each of the spermatogenic follicle formed stratified layers composed of spermatogonia, spermatocytes spermatids, and spermatozoa in groups on the follicular wall. The reproductive cycle of P. amurensis could be classified into five successive stages: early active, late active, ripe, partially spawned, and recovery. Spawning occurred twice a year from May to July and from September to October, the main spawning seasons also appeared twice a year between May and June, and in October when the water temperatures reached above $18^{\circ}C$. The monthly changes in the condition factor were closely related with the reproductive cycle. Minimum size for the sexual maturation of female and male were 8.1 mm in shell length. There were two patterns for the gametogenesis: 1. After spawning, the undischarged ripe oocytes and spermatozoa in the follicles were degenerated and absorbed, but in part, the existing follicles were not contracted significantly and then they took part in new gametogenesis within one or two months (especially, in summer). 2. After spawning, each follicle was contracted, thereafter gametogenesis again occurred in newly formed follicles.

  • PDF

Gametogenesis, Gonadal Development and Maturation of the Sea Squirt, Halocynthia roretzi (우렁쉥이, Halocynthia roretzi의 배우자 형성 및 생식소 발달)

  • 김봉석;방종득;류호영;홍정표;정의영
    • Development and Reproduction
    • /
    • v.5 no.2
    • /
    • pp.137-144
    • /
    • 2001
  • Gametogenesis and gonadal development of the sea squirt Halocythia roretzi, which is two years old were investigated by histological study. The specimens were collected in Guryong-po coastal area Kyoungsangbuk-do, Korea from May 1996 to April 1997. The sea squirt is hermaphrodite and oviparous. The ovary is located in the inner wall of the tunic year-round, but the testis can be distinguished from in June. The ovary is composed of 6∼8 gonoducts at the left side and 8∼10 ones at the right side, the testis consists of the complex gonad having irregular sacular structures. Oogonia in the ovarian sac were 11.7∼15.6 ${\mu}m$ in diameter. The early developing oocytes were 39.6∼47.6 ${\mu}m$ and nucleus 10.0∼25.0 ${\mu}m$ in diameter. Oocytes in the ovarian sacs during vitellogenesis were 158.6∼210.0 ${\mu}m$, and fully ripe oocytes which were to 210.0∼230.9 ${\mu}m$ in diameter had several test cells in the cortical parts showing a characteristic of vertebrate. The testis showed a general spermatogenesis as in the marine animals. The three-year old sea squirt occurred the first spawning between January to February under 10$^{\circ}C$

  • PDF

Regulation of mitochondrial morphology and metabolism by Jak-STAT pathway

  • Rhee, Kun Do
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.189-193
    • /
    • 2021
  • Jak-STAT pathway is required for embryogenesis, female gametogenesis, cytokine-mediated neuroprotection, diabetes, obesity, cancer, stem cell, and various tissues. The noncanonical role of Jak-STAT in mitochondria function was supported by the detection of STAT protein in mitochondria, however, several studies show that STAT protein is detected in the endoplasmic reticulum (ER), and not in mitochondria. STAT protein may alter mitochondria function without entering mitochondria, this involves regulation of fission and fusion proteins to change mitochondria morphology. However, how changes in mitochondria morphology lead to changes in mitochondria metabolism needs further investigation.

Gametogenesis and Reproductive Cycle of the Murex Shell Ceratostoma rorifluum(Neogastropoda: Muricidae) (패류 맵사리(Ceratostoma rorifluum)의 생식세포형성과 생식주기)

  • Lee, Ju-Ha
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.41 no.4
    • /
    • pp.253-260
    • /
    • 2008
  • Gonadal development, gametogenesis, reproductive cycle, spawning, relative weight of flesh, and onset of sexual maturity of the murex shell, Ceratostoma rorifluum, collected from the rocky intertidal zone of Daehang-ri, Buan-gun, Jeollabuk-do, Korea were investigated monthly from January to December 2005 both cytologically and histologically. The gonads were widely placed on the digestive gland located in the posterior spiral fleshy part in the shell. C. rorifluum had separate sexes, and was an internal fertilizer. The sex ratio of females to males was approximately 1:1. The ovary and testis contained a great number of oogenic follicles and spermatogenic tubules, respectively. The oogonia and fully ripe oocytes were $15-19{\mu}m$ and $150-160{\mu}m$ in diameter, respectively, and the cytoplasm of the ripe oocytes contained a number of yolk granules. The relative weight of flesh reached a maximum in August($39.35{\pm}0.40%$), and then decreased rapidly in November($32.75{\pm}1.20%$). The percentages of female and male snails at first sexual maturity with shell heights ranging from 12.1-14.0 mm were 60.0% and 52.9%, respectively, while 100% of the snails of both sexes with shell heights over 18.1 mm were reproductively active. Based on the gonadal development and histological observations, the reproductive cycle of the snail could be categorized into five successive stages: early active(December to May), late active(March to July), ripe(June to September), spawning(July to October), and recovery(October to March). C. rorifluum spawned once a year between July and October, and the majority of spawning occurred in September when the seawater temperature exceeded $23.5^{\circ}C$.

Gametogenesis and Reproductive Cycle of the Murex Shell (Ocenebra japonica) (Neogastropoda: Muricidae) (어깨뿔고둥 (Ocenebra japonica)의 생식세포형성과 생식주기)

  • LEE Ju Ha
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.5
    • /
    • pp.385-392
    • /
    • 2004
  • Gonadal development, gametogenesis, reproductive cycle, gonad index, and flesh weight rate of the murex shell (Ocenebra japonica) collected from the rocky intertidal zone of Buan-gun, Jeollabuk-do, Korea were investigated by means of histological method from January to December 2002. O. japonica had separate sexes, and was oviparous. The gonad was widely situated on the surface of the digestive gland located in the rear of the spiral flesh part in the shell. The male penis was located near the two tentacles. The ovary was composed of a number of oogenic follicles, and the testis was composed of several spermatogenic tubules. The size of ripe oocyte was approximately $140{\mu}m$ in diameter. The gonad index (GI) began to increase in March $(33.24{\pm}2.33)$ and reached the maximum in June $(47.77{\pm}1.90)$ Thereafter, the values decreased from July $(45.12{\pm}3.60)$ to October $(19.32{\pm}2.91)$. The flesh weight rate (FWR) began to increase in January $(25.93{\pm}1.32)$ and reached the maxium in May $(31.78{\pm}1.09)$ Thereafter, the values decreased from June $(31.50{\pm}0.66)$ to October $(24.09{\pm}1.60)$. The reproductive cycle could be classified into five successive stages: early active (October to April), late active (January to June), ripe (May to September), spawning (July to September) and recovery (September to February). The reproductive cycle was closely related to the seawater temperature.

Seasonal Variations in Biochemical Components of the Visceral Mass and Adductor Muscle in the Pen Shell, Atrina pectinata

  • Baik Sung-Hyun;Kim Kang-Jeon;Chung Ee-Yung;Choo Jong-Jae;Park Kwan Ha
    • Fisheries and Aquatic Sciences
    • /
    • v.4 no.1
    • /
    • pp.18-24
    • /
    • 2001
  • Seasonal content changes of the three key nutrients for organisms, protein, lipid and glycogen, were analyzed for a whole year to delineate the seasonal energy strategy in pen shells, Atrina pectinata. Two metabolically important organs, the visceral mass and the posterior adductor muscle, were examined. Protein in the visceral mass rose in April and stayed at the level until June followed by the constant minimum value between August and November. The protein contents in the posterior adductor muscle increased sharply in April and again in July, followed by a gradual decline thereafter. Total lipid contents in the visceral mass gradually increased between January and May, and then slowly decreased until September since which a new weak increase was noticed. Lipid levels in the adductor muscle rapidly dropped in June and July. Glycogen contents in the visceral mass rapidly increased between February and June, followed by a drastic drop in July. This reduced visceral glycogen level was maintained up to September, and a gradual reduction ensued. Glycogen contents in the adductor muscle steadily but markedly increased from April reaching the maximum in August, and then slowly declined thereafter. These results suggest that an accelerated protein and lipid synthesis occurs in the gonad when the pen shell undergoes the ripe stage of gametogenesis, but the levels of these two nutrients decrease on spawning. With this gonadal process, regular protein synthesis and lipid storage in the posterior adductor muscle are temporarily arrested. The most important nutrient reserves that support gonad developmental cycles in a long term seem to be glycogen of the posterior adductor muscle.

  • PDF

Reproductive Cycle of Marsh Clam, Corbicula leana (Prime) in Hyongsan Estuary (형산강하구에 서식하는 참재첩 (Corbicula leana (Prime))의 생식주기)

  • Kim Jin-Hee;YOO Myong-Suk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.3
    • /
    • pp.184-191
    • /
    • 2000
  • Gametogenesis and the reproductive cycle of the marsh clam, Corbicula leana(Prime} were investigated monthly Hyongsan estuary, Korea from January to December 1998 by histological observation. C. leana had separate sexes, and oviparous. The gonads were located between the sub-region of mid-intestinal gland in visceral cavity and reticular cennective tissue. The ovary and testis were composed of a number of ovarian and testicular tubules, respectively, Mature oocytes were characterized by germinal vesicles with nucleoli and their sizes ranged $70\;to\;80{\mu}m$ in diameter. A number of mesenchymal tissues and pigment granular cells were distributed in the growing oocytes and spermatocytes during early developmental stages. With the further development of gonad, these tissuse and cells gradually disappeared. The monthly changes in the fatness index were closely related to reproductive cycle. Minimun size for sexual maturity was reached over 10.0 mm in shell length. The reproductive cycle could be classified into 6 stages : multiplicative (March to April): early growing and growing (May to June), mature (July to August), spent (September), degenerative (October) and recovery (November to February).

  • PDF

Reproductive Biology of the Temperate Soft Coral Dendronephthya suensoni (Alcyonacea: Nephtheidae)

  • Choi, Eun-Ji;Song, Jun-Im
    • Animal cells and systems
    • /
    • v.11 no.2
    • /
    • pp.215-225
    • /
    • 2007
  • The azooxanthellate soft coral Dendronephthya suensoni (Holem, 1895) is distributed mainly around Jejudo Island, Korea. This species was determined as gonochoric with a sex ratio of 2:1 (female:male). Both female and male colonies have one gametogenic cycle a year. The annual reproductive cycle of D. suensoni is dependent on the seawater temperature. In particular, reproduction of the male colony showed a higher positive correlation between seawater temperature and the mean diameter of the spermaries. Gametogenesis in females and males took 6 months and 12 months, respectively. The mean diameter of a mature oocyte was $249.29\;{\pm}\;36.24\;{\mu}m$, with a maximum size of $354.45\;{\mu}m$. Spawning could have occurred in the fall after the seawater temperature began to decrease.

새꼬막, Scapharca subcrenata Lischke의 성성숙에 관한 연구

  • 이주하
    • The Korean Journal of Malacology
    • /
    • v.14 no.2
    • /
    • pp.91-102
    • /
    • 1998
  • 새꼬막은 자웅이체로서 난생이었다. 생식소는 내장낭의 간중장선에서부터 족부까지 외측의 대부분을 싸고 있으며, 난소는 난자형성소낭, 정소는 정자형성소낭으로 구성되어 있었다. 완숙란의 세포질에는 많은 난황과립을 축적하고 있으며, 난막의 외측은 얇은 젤라틴상의 피막으로 싸여 있었다. 정자형성소낭벽에는 정원, 정모, 정세포 및 변태한 정자 순으로, 소낭의 내강을 향하여 충상배열을 하며 성숙 발달되었다. 생식주기는 초기 활성기(11-5월), 후기 활성기(5-7월), 완숙기(6-9월), 부분 방출기(7-9월), 방출 및 비활성기(9-4월)로 구분할 수 있었다. 방란, 방정은 수온이 21$^{\circ}C$ 이상으로 상승하는 7월초순부터 9월까지 지속되며, 산란 최성기는 8월이었다. 비만도지수의 월별 변화는 생식주기와 아주 밀접ㅎ나 관계가 있었다. 난자형성소낭과 정자형성소낭에는 eosin에 강하게 염색되는 과립세포와 간충직들이 나타나는데, 이들은 생식소 및 생식세포형성과 발달에 영양을 공급하는 영양세포로 생각되었다.

  • PDF