• Title/Summary/Keyword: Galvanic device

Search Result 10, Processing Time 0.021 seconds

Design of 850 nm Near Infrared and Galvanic Current Based Eyeglass-Type Device for Periorbital Wrinkle Treatment and Verification of Treatment Performance through Image Analysis (850 nm 파장대 근적외선과 갈바닉 전류기반의 눈가 주름 치료기 개발 및 영상 분석을 통한 치료성능 검증)

  • Ahn, Sung Su;Kwon, Ki Jin
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.12
    • /
    • pp.1379-1386
    • /
    • 2018
  • In this paper, we proposed eyeglass type periorbital wrinkle treatment device for reducing and improving periorbital wrinkles using near infrared LED of 850nm wavelength and galvanic current. The proposed periorbital wrinkle treatment device is equipped with a control system based on F-PCB. It consists of eight near-infrared LEDs and four indicator LEDs for treatment of right and left periorbital wrinkles. The eyeglass frame is coated with conductive material, so galvanic current can flow to the skin of periorbital wrinkle contacted to it. One male adult in the mid-40s was allowed to use the device for 10 minutes every day for 4 weeks. After 4 weeks, image analysis using optical equipment for measuring wrinkles indicated that wrinkle indexes were reduced.

Synthesis of Ultra-long Hollow Chalcogenide Nanofibers

  • Jwa, Yong-Ho
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.3.1-3.1
    • /
    • 2011
  • Nanoengineered materials with advanced architectures are critical building blocks to modulate conventional material properties or amplify interface behavior for enhanced device performance. While several techniques exist for creating one dimensional heterostructures, electrospinning has emerged as a versatile, scalable, and cost-effective method to synthesize ultra-long nanofibers with controlled diameter (a few nanometres to several micrometres) and composition. In addition, different morphologies (e.g., nano-webs, beaded or smooth cylindrical fibers, and nanoribbons) and structures (e.g., core-.shell, hollow, branched, helical and porous structures) can be readily obtained by controlling different processing parameters. Although various nanofibers including polymers, carbon, ceramics and metals have been synthesized using direct electrospinning or through post-spinning processes, limited works were reported on the compound semiconducting nanofibers because of incompatibility of precursors. In this work, we combined electrospinning and galvanic displacement reaction to demonstrate cost-effective high throughput fabrication of ultra-long hollow semiconducting chalcogen and chalcogenide nanofibers. This procedure exploits electrospinning to fabricate ultra-long sacrificial nanofibers with controlled dimensions, morphology, and crystal structures, providing a large material database to tune electrode potentials, thereby imparting control over the composition and shape of the nanostructures that evolved during galvanic displacement reaction.

  • PDF

A Study of Failure Mechanism through abnormal AlXOY Layer after pressure Cooker Test for DRAM device (DRAM 소자의 PCT 신뢰성 측정 후 비정상 AlXOY 층 형성에 의해 발생된 불량 연구)

  • Choi, Deuk-Sung;Jeong, Seung-Hyun;Choi, Chae-Hyoung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.31-36
    • /
    • 2018
  • This research scrutinizes the reason of failure after pressure cooker test (PCT) for DRAM device. We use the physical inspecting tools, such as microscope, SEM and TEM, and finally find the discolor phenomenon, corrosion of Al and delamination of inter-metal dielectric (IMD) in the failed devices after PCT. Furthermore, we discover the abnormal $Al_XO_Y$ layer on Al through the careful additional measurements. To find the reason, we evaluate the effect of package ball size and pinhole in passivation layer. Unfortunately, those aren't related to the problems. We also estimate halide effect of Al. The halogens such like Cl are contained within EMC material. Those result in the slight improving of PCT characteristics but do not perfectly solve the problems. We make a hypothesis of Galvanic corrosion. We can find the residue of Ti at the edge of pad open area. We can see the improving the PCT characteristics by the time split of repair etch. The possible mechanism of the PCT failure can be deduced as such following sequence of reactions. The remained Ti reacts on the pad Al by Galvanic corrosion. The ionized Al is easily react with the $H_2O$ supplied under PCT environment, and finally transfers to the abnormal $Al_XO_Y$ layer.

Corrosion mitigation of photovoltaic ribbon using a sacrificial anode (희생양극을 이용한 태양광 리본의 부식 저감)

  • Oh, Wonwook;Chan, Sung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.681-686
    • /
    • 2017
  • Degradation is commonly observed in field-aged PV modules due to corrosion of the photovoltaic ribbon. The reduced performance is caused by a loss of fill factor due to the high series resistance in the PV ribbon. This study aimed to mitigate the degradation by corrosion using five sacrificial anodes - Al, Zn and their alloys - to identify the most effective material to mitigate the corrosion of the PV ribbon. The corrosion behavior of the five sacrificial anode materials were examined by open circuit potential measurements, potentiodynamic polarization tests, and galvanic current density and potential measurements using a zero resistance ammeter. Immersion tests for 120 hours were also conducted using materials and damp heat test tests were performed for 1500 hours using 4 cell mini modules. The Al-3Mg and Al-3Zn-1Mg sacrificial anodes had a low corrosion rate and reduced drop in power, making then suitable for long-term use.

Attitudes Towards Homecare Beauty Devices in Women in Correlation to Narcissism (여성의 자기애에 따른 홈케어 뷰티디바이스 이용 태도)

  • Kang, Shin-Ok;Kim, Moon-Ju
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.5
    • /
    • pp.212-224
    • /
    • 2022
  • This study aims to provide data on attitudes towards the use of Homecare beauty devices in correlation to narcissism of women between ages 30-59. Through statistical analysis of 563 survey questions, data displayed that respondents' age, level of education, marital status, economic status, and career status showed a strong correlation with implicit narcissism, while explicit narcissism only showed a correlation with age and career status. The most popular skincare location was shown to be 'self-provided at home', and the most popular item purchased being 'galvanic devices'. Secondly, attitudes towards the use of homecare beauty devices in correlation towards implicit narcissistic respondents were only to the consideration of its use, while explicit narcissists displayed a strong correlation between the purchase of a product and the recommendation of others. While this is the first study on attitudes towards homecare beauty devices in relation to a personality-based trait like narcissism and it displayed meaningful results, a more in-depth study in the future dealing with a larger region and respondent groups of a wider age and gender group should be undertaken.

AN EXPERIMENTAL STUDY ON THE EFFECT OF THE GALVANIC CURRENT ON THE MANDIBULAR GROWTH IN RAT (Galvani전류가 백서의 하악골 성장에 미치는 영향에 관한 실험적 연구)

  • Yang, Sang-Duk;Suhr, Cheng Hoon
    • The korean journal of orthodontics
    • /
    • v.18 no.1 s.25
    • /
    • pp.189-207
    • /
    • 1988
  • In almost all biologic systems, mechanically induced electric charge separation is a fundamental phenomenon. Since the hypothesis was established that the generation of electric potentials in bone by mechanical stress including muscular force might control the activity in bone by mechanical stress including muscular force might control the activity of osseous cells and their biopolymeric byproduct, the concept of electrically mediate growth mechanism, which involves biological growth and bone remodeling by any means, in living systems has been applied clinically and experimentally to orthopedic fracture repair, the regulation of orthodontic tooth movement, epiphyseal cartilage regeneration, etc. On the other hand, recent numerous research data available show apparently that the mandibular condyle has the characteristics of growth center as well as growth site. In addition, there exists a considerable difference of opinion as to the role of external pterygoid muscle in condylar growth. In view of these evidences, this. experiment was performed to investigate the effect of the galavic current on the growth of the mandible and condyle for elucidating the nature of condylar growth. The bimetallic device was composed of silver and platinum electrode connected with resistor (3.9 Mohm), which was expected to produce galvanic current of 23.6 nA according to the galvanic principle. The 25 Sprague-Dawley rats were divided into two group, 2 week group comprising 8 animals exposed to satanic current for 2 weeks and 3 control animals not exposed for 2 weeks, 4 week group comprising 10 animals in experimental group and 4 animals in control group applied for 4 weeks respectively. The experimental rats were subjected to application of the galvanic current invasively to codylar head surface and the control groups with sham electrode. On the basis of anatomic and histologic data from the mandibular condyle of experimental and control group, the following results were obtained. 1. After 2 weeks, there was no increase of mandibular size in experimental group over that of the control group. 2. After 4 weeks, the size of the condylar head was larger in experimental group than that of the control. 3. In 2 week group, the thickness of the mitotic compartment and hypertrophic chondroblastic layer was increased in experimental group. 4. In 4 week group, the number and the size of the hypertrophic chondroblasts were increased significantly on experimental group over that of the control group. 5. The application of the satanic current caused an increase in chondrocytic hypertrophy and intercellular matrix in both groups.

  • PDF

A Study on the corrosion property by post treatment in the metal dry etch (Metal 건식각 후처리에 따른 부식 특성에 관한 연구)

  • Mun, Seong-Yeol;Kang, Seong-Jun;Joung, Yang-Hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.747-750
    • /
    • 2007
  • This study proposes that chlorine residue after metal etch as the source of metal corrosion, and charges should be removed by optimizing etch, PR strip and cleaning condition. Charges distributed along the metal line acts as a source of tungsten (W) plug corrosion when associated with following cleaning solution. In cleaning process after metal etch and PR strip, chemical selection is significantly important in terms of metal corrosion. Optimal corrosion preventive PH, no metal attack (choice of optimal inhibitants), high by product removal efficiency and optimal de ionized water treatment condition is critical to the metal corrosion prevention.

  • PDF

A Study on the Measurement of Foreign Material in Dissimilar Metal Contact Using Pulse Laser and Confocal Fabry-Perot Interferometer (펄스 레이저와 CFPI를 이용한 이종금속 접촉부의 이물질 측정에 관한 연구)

  • Hong, Kyung-Min;Kang, Young-June;Park, Nak-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.2
    • /
    • pp.160-164
    • /
    • 2013
  • A laser ultrasonic inspection system is a non-contact inspection device which generates and measures ultrasonics by using laser beam. A laser ultrasonic inspection system provides a high measurement resolution because the ultrasonic signal generated by a pulse laser beam has a wide-band spectrum and the ultrasonic signal is measured from a small focused spot of a measuring laser beam. In this study, galvanic corrosion phenomenon was measured by non-destructive and non-contact method using the laser. The case of mixed foreign material on the part of corrosion was assumed and laser ultrasonic experiment was conducted. Ultrasonic was generated by pulse laser from the back side of the specimen and ultrasonic signal was acquired from the same location of the front side using continuous wave laser and Confocal Fabry-Perot Interferometer(CFPI). The characteristic of the ultrasonic signal of exist foreign material part was analyzed and the location and size of foreign material was measured.

A Study on the Effect of Metallic Fillers and Plastic for Ionic Migration (이온마이그레이션에 대한 플라스틱과 금속첨가제의 영향 연구)

  • Jeon, Sang Soo;Kim, Ji Jung;Lee, Ho Seung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.2
    • /
    • pp.30-34
    • /
    • 2021
  • Electrical failures and reliability problems of electronic components by ionic migration between adjacent device terminals have become an issue in automotive electronics. Especially unlike galvanic corrosion, ionic migration is occurred at high temperature and high humidity under applied electric field condition. Until now, although extensive studies of the ionic migrations dealing with PCBs, electrodes, and solders were reported, there is no study on the effect of insulation polymers and metallic fillers for ionic migration. In this research, therefore, ionic migration induced by the types and contents of polymers and metallic fillers, and variety conditions of temperature, humidity, and applied voltage was studied in detail. Ester and amide types of liquid crystal polymer (LCP) and poly (phthalamide) (PPA) were used as base polymers, respectively and compounded with the metallic fillers of Copper iodide (CuI), Zinc stearate (Zn-st), or Calcium stearate (Ca-st) in various compositions. The compounding polymers were fabricated in IPC-B-24 of SIR test coupon according to ISO 9455-17 with Cu electrodes for ionic migration test. While there is no change in LCP-based samples, ionic migration in PPA compounding sample with a high water absorption property was accelerated in the presence of 0.25 wt% or above of CuI at the environmental conditions of 85℃, 85% RH and 48V. The dendritic short-circuit growth of Cu caused by ionic migration between the electrodes on the surface of compounded polymers was systematically observed and analyzed by using optical microscopy and SEM (EDX).

Developed an output device for high-frequency cosmetic medical equipment using micro multi-needle (마이크로 멀티니들을 이용한 고주파 피부미용 의료기기를 위한 출력 장치 개발)

  • Kim, Jun-tae;Joo, Kyu-tai;Cha, Eun Jong;Kim, Myung-mi;Jeong, Jin-hyoung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.5
    • /
    • pp.394-402
    • /
    • 2021
  • The entry of an aging society and the extension of human life expectancy, the increasing interest in women's social advancement and men's appearance, and the natural interest in K-culture through media media, while receiving worldwide attention, Focus on K-Bueaty. Recently, looking at the occupation of the medical tourism field, in the case of aesthetic medicine tourism such as molding and dermatology, it has gained popularity not only in Asia such as China and Japan, but also in North America and Europe. The first external confirmation of human aging is the wrinkles on the skin of the face. Clean, wrinkle-free, elastic and healthy skin is a desire of most people. Skin condition and condition such as focused ultrasonic stimulation (HIFU: High Intensity Focused Utrasound) and low frequency, high frequency (RF: Radio Frequency), galvanic therapy using microcurrent, cryotherapy using rapid cooling, etc. Depending on the method of management, the effect of the treatment differs depending on the output and the stimulation site, etc., even in the treatment of medical equipment and beauty equipment using the same mechanism. In this research, in order to develop invasive high-frequency dermatological devices using a large number of beauty medical devices and microneedles of beauty devices, the international standards IEC 60601-2 (standards for individual medical devices) and MFDS (Ministry of) We designed and developed a high-frequency output device in compliance with the high-frequency stimulation standard announced in the Food and Drug Safety (Ministry of Food and Drug Safety). The circuit design consists of an amplifier (AMP: Amplifier) using Class-A Topology and a power supply device using Half-Bridge Topology. As a result of measuring the developed high-frequency output device, an average efficiency of 63.86% was obtained, and the maximum output was measured at 116.7W and 50.67dBm.