• 제목/요약/키워드: Galvanic corrosion potential

검색결과 79건 처리시간 0.024초

연안 선박용 Al합금 프로펠러의 부식에 관한 연구 (A Study on the Corrosion of Al-Alloy Propeller Used for a Coasting Vessel)

  • 임우조;박희옥;윤병두
    • 수산해양교육연구
    • /
    • 제15권2호
    • /
    • pp.176-183
    • /
    • 2003
  • Recently, with the tendency of lightening, high-strength and high-speed in the marine industries such as marine structures, ships and propellers, it is rapidly enlarged the use of the aluminium alloy. Therefore, there occurs much interest in the study on corrosion characteristics of aluminium alloy. This paper was studied on the corrosion characteristics of Al-Mg alloy propeller used for a coasting vessel. Under the various pH of marine environment, the corrosion test of Al-Mg alloy was carried out. And thus polarization resistance, corrosion potential, and current density behavior of Al-Mg alloy and galvanic corrosion behavior of Al-brass and Al-Mg alloy coupled Al 5086 and SS 400 for hull were investigated. The main results are as following: 1. The corrosion potential of Al-brass propeller is more nobel than materials for hull, but that of Al-Mg alloy propeller is low or similar to materials for hull. Therefore, the galvanic corrosion of hull due to Al-Mg propeller don't occur. 2. The polarization resistance of Al-Mg alloy in sea water of pH 4 is highest, and corrosion current density of Al-Mg propeller is the most controlled. 3. As pH value decreases, potential showed Evans polarization diagram approaches cathodic potential. The corrosion current density of Al-Mg alloy is controlled to anodic reaction rate, therefore, the corrosion reaction of Al-Mg alloy is anodic control.

희생양극 하에서 알루미늄의 해수 부식 거동 (Corrosion Behavior of Aluminium Coupled to a Sacrificial Anode in Seawater)

  • 김종수;김희산
    • 한국표면공학회지
    • /
    • 제39권1호
    • /
    • pp.25-34
    • /
    • 2006
  • Al-Mg alloy, an open rack vaporizer(ORV) material was reported to be corroded in seawater environments though the ORV material was coupled to thermally sprayed Al-Zn alloy functioning a sacrificial anode. In addition, the corrosion behavior based on the calculated corrosion potential did not match the observed corrosion behavior. Hence, the goal of this study is to get better understanding on Al or Al-Mg alloy coupled to Al-Zn alloy and to provide the calculated corrosion potential representing the corrosion behavior of the ORV material by immersion test, electrochemical tests, and calculation of corrosion and galvanic potential. The corrosion potentials of Al and Al alloys also depended on alloying element as well as surface defects. The corrosion potentials of Al and Al-Mg alloy were changed with time. In the meantime, the corrosion potentials of Al-Zn alloys were not. The corrosion rates of Al-Zn alloys were exponentially increased with zinc contents. The phenomena were explained with the stability of passive film proved by passive current density depending on pH and confirmed by the model proposed by McCafferty. Dissimilar material crevice corrosion (DMCC) test shows that higher content of zinc caused Al-Mg alloy corroded more rapidly, which was due to the fact that higher corrosion rate of Al-Zn makes [$H^+$] and [$Cl^-$] more concentrated within pit solution to corrode Al-Mg alloy. Considering electrochemical reactions within pit as well as bulk in the calculation gives better prediction on the corrosion behavior of Al and Al-Mg alloy as well as the capability of Al-Zn alloy for corrosion protection.

임플랜트 고정체와 지대나사간의 부식특성에 관한 연구 (CORROSION CHARACTERISTICS BETWEEN IMPLANT FIXTURE AND ABUTMENT SCREW)

  • 기수진;권혁신;최한철
    • 대한치과보철학회지
    • /
    • 제38권1호
    • /
    • pp.85-97
    • /
    • 2000
  • The purpose of this study was to compare the corrosion characteristics between implant fixture and two types of abutment screw ; gold screw, titanium screw. The anodic polarization behavior, the galvanic corrosion behavior, and the crevice corrosion behavior of prepared samples were investigated using potentiostat and scanning electron microscope. The results were as follows: 1. Anodic polarization behavior of samples; The primary passivation potential of implant fixture was -420mV, implant abutment was -560mV. titanium screw was -370mV and gold screw was -230mV. All samples were shown to have a high corrosion potential and good formation of passive film. The critical passive current density of gold screw was higher than that of other samples and the sample of gold screw showed a unstable passive film formation at passive region. 2. Galvanic corrosion behavior of samples; Contact current density between implant fixture and titanium screw showed $8.023{\times}10^{-5}C/cm^2$. Contact current density between implant fixture and gold screw showed $5.142{\times}10^{-5}C/cm^2$. 3. Crevice corrosion behavior of samples; The crevice corrosion resistance of sample using titanium screw was higher than that of sample using gold screw, and a severe corrosion morphologies were observed at the fixture-screw interface by the scanning electron microscope.

  • PDF

Effect of Post-CMP Cleaning On Electrochemical Characteristics of Cu and Ti in Patterned Wafer

  • Noh, Kyung-Min;Kim, Eun-Kyung;Lee, Yong-Keun;Sung, Yun-Mo
    • 한국재료학회지
    • /
    • 제19권3호
    • /
    • pp.174-178
    • /
    • 2009
  • The effects of post-CMP cleaning on the chemical and galvanic corrosion of copper (Cu) and titanium (Ti) were studied in patterned silicon (Si) wafers. First, variation of the corrosion rate was investigated as a function of the concentration of citric acid that was included in both the CMP slurry and the post-CMP solution. The open circuit potential (OCP) of Cu decreased as the citric acid concentration increased. In contrast with Cu, the OCP of titanium (Ti) increased as this concentration increased. The gap in the OCP between Cu and Ti increased as citric acid concentration increased, which increased the galvanic corrosion rate between Cu and Ti. The corrosion rates of Cu showed a linear relationship with the concentrations of citric acid. Second, the effect of Triton X-$100^{(R)}$, a nonionic surfactant, in a post-CMP solution on the electrochemical characteristics of the specimens was also investigated. The OCP of Cu decreased as the surfactant concentration increased. In contrast with Cu, the OCP of Ti increased greatly as this concentration increased. Given that Triton X-$100^{(R)}$ changes its micelle structure according to its concentration in the solution, the corrosion rate of each concentration was tested.

산-염소이온 분위기의 인자전위에 따른 내후성강 용접부의 부식파괴에 관한 연구 (A Study on Corrosion Failure of a Weathering Steel Weldment with Various Applied Potentials in Acid-chloride Solution)

  • 최윤석;김정구;김종집;이병훈
    • Journal of Welding and Joining
    • /
    • 제18권3호
    • /
    • pp.97-105
    • /
    • 2000
  • The stress corrosion cracking(SCC) and hydrogen embrittlement cracking(HEC) characteristics of a weathering steel weldment were investigated in aerated acid-chloride solution. The electrochemical properties of weldment were investigated by polarization test and galvanic corrosion test. Weathering steel did not show passive behavior in the acid-chloride solution. Galvanic corrosion between the weld metal and the base metal was not observed because the base metal was anodic to the weld metal. The slow-strain-rate tests(SSRT0 were conducted at a constant strain rate o 7.87×{TEX}$10^{-7}${/TEX}/s at corrosion potential, and at potentiostatically controlled anodic and cathodic potentials. The weldment of weathering steel was susceptible to both anodic dissolution SCC and hydrogen evolution HEC.

  • PDF

Mg 합금유전양긍에 의한 온수보일러의 음극방식거동에 관한 연구 (Study on the Cathodic Protectioin Behavior of Hot Water Boiler by Mg-Alloy Galvanic Anode)

  • 정기철
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2000년도 춘계학술대회 논문집(Proceeding of the KOSME 2000 Spring Annual Meeting)
    • /
    • pp.115-121
    • /
    • 2000
  • As the development of industry water quality of river is going to bad because of waste water of an industrial complex and general home agricultural chemicals exhaust of $SO_3$ and CO gas acid rain and so on. Corrosion damage of boiler factory equipment and so forth occur quickly due to using of the polluted water resulting in increasing leak accident. Especially working life of hot water boiler using the polluted water becomes more short and energy loss increases. The cathodic protection method is the most economical and reliable one to prevent corrosion damage of steel structures. Mg-base alloys galvanic anode protection of cathodic protection method is suitable for than application of hot water boiler using water with high specific resistance such as tap water. This paper is studied on the cathodic protection characteristics of how water boiler. In tap water and 0.001mol/$\ell$ NaCl solution the characteristics of anodic polarization of Mg-base alloys galvanic anode and tube material is investigated the measurement of cathodic protection potential according to the time elaspsed is carried out.

  • PDF

해양구조물의 방식을 위한 알루미늄 합금의 희생양극적 부식 특성의 전기화학적 평가 (Electrochemical Evaluation of Corrosion Properties of Aluminum Alloy as a Sacrificial Anode for Offshore Structure Protection)

  • 이진호;이재호
    • 한국표면공학회지
    • /
    • 제48권2호
    • /
    • pp.68-72
    • /
    • 2015
  • The corrosion behavior of metals and alloys for the safety of offshore structures in seawater was investigated for the application of sacrificial anodes. The experiments were focused on the polarization behaviors and the surface morphology of each metal after experiments. Pure Zn, pure Al (Al1050), Al alloys (Al5052, Al6061), Mg alloys (AZ31, AZ91D) and steel (SCM440) were assessed in 3.5% sodium chloride solution by means of potentiodynamic polarization to verify the galvanic corrosion potential ($E_{couple}$). Potentiostat plots were plotted to compare the surface and corrosion current density ($i_{couple}$) of metals as sacrificial anodes in seawater to protect steel alloy as a cathode. Al alloys showed the best performance as a sacrificial anode, on the other hand, Mg alloys showed overprotection behavior. The surface morphologies of sacrificial anodes were observed by FESEM and compared.

콘크리트구조물 중의 철근 부식 저감을 위한 FRP Hybrid Bar의 적용성 연구 (A Study on the Application of FRP Hybrid Bar to Prevent Corrosion of Reinforcing Bar in Concrete Structure)

  • 이승태;박광필;박기태;유영준;서동우
    • 한국산학기술학회논문지
    • /
    • 제20권5호
    • /
    • pp.559-568
    • /
    • 2019
  • 최근 해양환경의 대형 SOC구조물 증가에 따른 구조물 내구성 증진에 관심이 증가되고 있다. 내구성 증진을 위해 개발된 FRP Hybrid Bar의 구조적 성능은 검증 되었으나 부식에 대한 저항성을 평가한 연구는 미흡하여 본 연구를 수행 하였다. 본 연구에서는 콘크리트 중의 철근 종류에 따른 철근부식 저항성을 평가하였다. 평가를 위하여 철근은 일반철근과 FRP hybrid Bar을 사용하였다. 시험방법은 갈바닉전류(Galvanic)와 반전지법(Half-Cell)을 사용하였으며, 철근부식 촉진을 위하여 콘크리트 내부에 염분을 0%, 1.5%, 3%, 6% 첨가하였다. 그 결과 갈바닉전류측정에서 FRP Hybrid Bar는 부식전류가 측정되지 않았다. 반면 일반철근에서는 시험 직후 부식이 발생하는 결과를 나타내었다. Half-Cell측정 결과에서도 4단계의 염분 함유량의 차이와 광물질혼화재료를 사용한 콘크리트와 일반콘크리트에 관계없이 FRP Hybrid Bar의 부식 저항성이 우수하게 나타났다. 따라서 FRP Hybrid Bar는 해양환경 및 철근부식이 예측되는 구조물용 대체 철근으로 사용이 가능하나 부착성능, 탄성계수, 절곡부의 강선 노출에 대한 처리 방법 등이 개선되면 염해로부터 철근부식 저항성 확보를 요구하는 구조물에 사용 할 수 있는 우수한 소재로 판단된다.

Effects of Cementitious Coating on Steel in Simulated Concrete Pore Solution

  • 오효림;김상효;안기용
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2010년도 춘계 학술대회 제22권1호
    • /
    • pp.475-476
    • /
    • 2010
  • Hydration products formed on the steel surface may impose the resistance to corrosion of steel when a concrete is exposed to a salt environment. In the present study, ordinary Portland cement (OPC), calcium aluminate cement (CAC) and calcium hydroxide are applied as coating materials on the steel surface to consider the hydrations of each binder at corrosion. Corrosion is measured in terms of the corrosion potential and galvanic current to detect the effects in mitigating the corrosion behavior.

  • PDF

AA1100의 부식에 미치는 Na2S, NaCl, H2O2 농도의 영향 (Effects of Na2S, NaCl, and H2O2 Concentrations on Corrosion of Aluminum)

  • 이주희;장희진
    • Corrosion Science and Technology
    • /
    • 제18권6호
    • /
    • pp.312-317
    • /
    • 2019
  • The objective of this study was to investigate the corrosion behavior of aluminum (AA1100) in a mixed solution of 0 ~ 0.1 g/L Na2S + 0.3 ~ 3 g/L NaCl + 0 ~ 10 mL/L H2O2. Potentiodynamic polarization tests were performed. Effects of solution compositions on corrosion potential, corrosion rate, and pitting potential of aluminum were statistically analyzed with a regression model. Results suggested that localized corrosion susceptibility of aluminum was increased in the solution with increasing concentration of NaCl because the pitting potential was lowered linearly with increasing NaCl concentration. On the contrary, H2O2 mitigated the galvanic corrosion of aluminum by increasing the corrosion potential. It also mitigated localized corrosion by increasing the pitting potential of aluminum. Na2S did not exert a noticeable effect on the corrosion of aluminum. These effects of different chemical species at various concentrations were independent of each other. Synergy or offset effect was not observed.