• Title/Summary/Keyword: Gallium nitride

Search Result 152, Processing Time 0.03 seconds

Performance Evaluation of GaN-Based Synchronous Boost Converter under Various Output Voltage, Load Current, and Switching Frequency Operations

  • Han, Di;Sarlioglu, Bulent
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1489-1498
    • /
    • 2015
  • Gallium nitride (GaN)-based power switching devices, such as high-electron-mobility transistors (HEMT), provide significant performance improvements in terms of faster switching speed, zero reverse recovery, and lower on-state resistance compared with conventional silicon (Si) metal-oxide-semiconductor field-effect transistors (MOSFET). These benefits of GaN HEMTs further lead to low loss, high switching frequency, and high power density converters. Through simulation and experimentation, this research thoroughly contributes to the understanding of performance characterization including the efficiency, loss distribution, and thermal behavior of a 160-W GaN-based synchronous boost converter under various output voltage, load current, and switching frequency operations, as compared with the state-of-the-art Si technology. Original suggestions on design considerations to optimize the GaN converter performance are also provided.

An Optimization of 600V GaN Power SIT (600V급 GaN Power SIT 설계 최적화에 관한 연구)

  • Oh, Ju-Hyun;Yang, Sung-Min;Jung, Eun-Sik;Sung, Man-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.5-5
    • /
    • 2010
  • Gallium Nitride(GaN)는 LED, Laser 등에 사용되는 광학적 특성뿐만 아니라 Wide Bandgap의 전기적 특성 또한 주목받고 있다. 본 논문은 600V급 GaN(Gallium Nitride) Power SIT(Static Induction Transistor)에 대해서 Design Parameter 변환에 따른 전기적 (Breakdown Voltgage, On-state Voltage Drop)특성과 열적 (Lattice Temperature Distribution)특성변화를 분석하여 소자가 갖는 구조적 손실을 최소화하였다. 또한, 기존 실리콘 기반 전력소자와 특성 비교를 통하여 GaN Power SIT의 우수성을 증명하였다. GaN Power SIT 소자 설계 및 최적화를 위해서 Silvaco사의 소자 시뮬레이터인 ATLAS를 사용하였다. 실험 결과 수 ${\mu}m$의 소자 두께만으로도 실리콘 전력소자에 비해 더 뛰어난 열 특성과 더 적은 전력소모를 갖는 600V급 GaN Power SIT 소자를 구현할 수 있었다.

  • PDF

A 5Watt Power Amplifier Module Using Gallium Nitride Device (질화갈륨소자를 이용한 5Watt급 전력증폭기 모듈)

  • Park, Chun-Seon;Han, Sang-Min;Lim, Jong-Sik;Ahn, Dal;An, Chong-Chul;Park, Ung-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.5
    • /
    • pp.1193-1200
    • /
    • 2008
  • This paper describes a developed 5Watt power amplifier module fer mobile communication system using Gallium Nitride (GaN) devices. Three amplification stages such as pre-amplifier, driver amplifier, and power amplifier have been fabricated and measured separately in advance for incorporating the total power amplifier module and estimating the performances. In addition, a defected ground structure is combined with the output stage of the power amplifier module for improving harmonic rejection and adjacent channel power (ACP) characteristics. The measured performances of the GaN power amplifier module include 58dB,min of gain, 37dBm,min of output power, 50dBc,min of harmonic rejection, 35dBc,min of IMD3 for 2-tone input, and 35dBc,min of ACP at 2.1GHz frequency band.

Analysis of Electrical/optical Characteristics Using The Octagonal Finger Type Electrode Pattern for Large-scale Lateral GaN LED (팔각 핑거 타입 전극패턴을 이용한 대면적 수평형 GaN LED의 전기적/광학적 특성 분석)

  • Yang, Ji-Won;Kim, Dong-Ho;Kim, Tae-Geun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.3
    • /
    • pp.12-17
    • /
    • 2011
  • In this paper, we report on the improved electrical and optical characteristics for decreasing current crowding effect and uniform current distribution by designing octagonal finger type electrode pattern in large-scale lateral GaN (Gallium Nitride) LED (Light-emitting diode) with numerical 3-D simulator. Compared with the conventional electrode pattern, proposed electrode pattern was investigated to confirm the improvement of characteristics. From the simulation results of 3-D SpeCLED/RATRO simulator, we found that the forward voltage was decreased by 0.34 V and the light output power was improved by 7.72 mW at the same injection current condition in the LED with proposed octagonal finger type electrode.

Photoelectrochemical Water Splitting Using GaN (GaN를 이용한 광전기화학적 물분해)

  • Oh, Ilwhan
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • This review article summarizes photoelectrochemical water splitting using gallium nitride (GaN). GaN materials have been studied as novel photoelectrode material due to its chemical stability and easy band gap engineering. Unlike other semiconductor materials that are easily corroded in strongly acidic or alkaline electrolyte, n-type GaN is chemically stable enough to be used as photoanode in oxygen evolution reaction. Furthermore, studies on p-type GaN have been recently reported. This review briefly discusses problems that need to be solved before GaN materials find widespread use in solar fuel application.

Investigation of GaN Negative Capacitance Field-Effect Transistor Using P(VDF-TrFE) Organic/Ferroelectric Material (P(VDF-TrFE) 유기물 강유전체를 활용한 질화갈륨 네거티브 커패시턴스 전계효과 트랜지스터)

  • Han, Sang-Woo;Cha, Ho-Young
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.209-212
    • /
    • 2018
  • In this work, we developed P(VDF-TrFE) organic/ferroelectric material based metal-ferroelectric-metal (MFM) capacitors in order to improve the switching characteristics of gallium nitride (GaN) heterojunction field-effect transistors (HFET). The 27 nm-thick P(VDF-TrFE) MFM capacitors exhibited about 60 ~ 96 pF capacitance with a polarization density of $6{\mu}C/cm^2$ at 4 MV/cm. When the MFM capacitor was connected in series with the gate electrode of GaN HFET, the subthreshold slope decreased from 104 to 82 mV/dec.

DC and RF Analysis of Geometrical Parameter Changes in the Current Aperture Vertical Electron Transistor

  • Kang, Hye Su;Seo, Jae Hwa;Yoon, Young Jun;Cho, Min Su;Kang, In Man
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1763-1768
    • /
    • 2016
  • This paper presents the electrical characteristics of the gallium nitride (GaN) current aperture vertical electron transistor (CAVET) by using two-dimensional (2-D) technology computer-aided design (TCAD) simulations. The CAVETs are considered as the alternative device due to their high breakdown voltage and high integration density in the high-power applications. The optimized design for the CAVET focused on the electrical performances according to the different gate-source length ($L_{GS}$) and aperture length ($L_{AP}$). We analyze DC and RF parameters inducing on-state current ($I_{on}$), threshold voltage ($V_t$), breakdown voltage ($V_B$), transconductance ($g_m$), gate capacitance ($C_{gg}$), cut-off frequency ($f_T$), and maximum oscillation frequency ($f_{max}$).