• Title/Summary/Keyword: Gallium metal

Search Result 89, Processing Time 0.025 seconds

Investigation of GaN Negative Capacitance Field-Effect Transistor Using P(VDF-TrFE) Organic/Ferroelectric Material (P(VDF-TrFE) 유기물 강유전체를 활용한 질화갈륨 네거티브 커패시턴스 전계효과 트랜지스터)

  • Han, Sang-Woo;Cha, Ho-Young
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.209-212
    • /
    • 2018
  • In this work, we developed P(VDF-TrFE) organic/ferroelectric material based metal-ferroelectric-metal (MFM) capacitors in order to improve the switching characteristics of gallium nitride (GaN) heterojunction field-effect transistors (HFET). The 27 nm-thick P(VDF-TrFE) MFM capacitors exhibited about 60 ~ 96 pF capacitance with a polarization density of $6{\mu}C/cm^2$ at 4 MV/cm. When the MFM capacitor was connected in series with the gate electrode of GaN HFET, the subthreshold slope decreased from 104 to 82 mV/dec.

A Study on the Method of Transferring Metal Specimens for Real-time Transmission Electron Microscopy using Ultrasonic Treatment (초음파 처리 활용 실시간 투과전자현미경 관찰용 금속 시편 전사 방법에 관한 연구)

  • H. Kim
    • Transactions of Materials Processing
    • /
    • v.33 no.2
    • /
    • pp.118-122
    • /
    • 2024
  • Micro-electromechanical systems (MEMS) based in-situ heating holders have been developed to enable high resolution imaging of heat treatment analysis. However, unlike the standard 3 mm metal disk specimens used in the furnace-based heating holder and general transmission electron microscopy holder, the MEMS-based in-situ heating holder requires thin specimens that can be penetrated by electrons to be transferred onto the MEMS chip. Previously, focused ion beam milling was used to transfer metal specimens, but it has the disadvantage of being expensive and the risk of specimen damage due to gallium ions. Therefore, in this study, we devised a method of transferring metallic materials by ultrasonic treatment using a transmission electron microscopy specimen made by electro jet polishing. A 3mm electropolished metal disk was placed in an appropriate solution, ultrasonicated, and then drop casted. The transfer of the specimen was successful, but it was confirmed that dislocations were formed inside the specimen due to ultrasonic treatment. This study provides a novel method for transferring metallic materials onto MEMS chips, which is cost-effective and less gallium ion damaging to the specimen. The results of this study can be used to improve the efficiency of heat treatment analysis using MEMS-based in-situ heating holders.

Gallium(III) Ion Hydrolysis under Physiological Conditions

  • Hacht, Brahim
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.372-376
    • /
    • 2008
  • The hydrolysis of gallium(III) has been studied using potentiometric techniques under physiological conditions of temperature 37 C and ionic strength 0.15 moldm-3 NaCl and at different metal ion concentrations. Changes in pH were monitored with a glass electrode calibrated daily in hydrogen ions concentrations. The titration data within the pH range of 2.5-9.99 were analyzed to determine stability constants of hydroxide species using the SUPERQUAD program. Several different species were considered during the calculation procedure and the following hydroxides have been characterized: Ga(OH)3, Ga(OH)4- Ga3(OH)112-, Ga4(OH)11+ and Ga6(OH)153+. Speciation calculations based on the determined constants were then used to simulate the species distribution.

Gallium Nitride Epitaxy films Growth with Lower Defect Density (결함밀도가 낮은 Gallium Nitride Epitaxy 막 제조)

  • 황진수
    • Korean Journal of Crystallography
    • /
    • v.9 no.2
    • /
    • pp.131-137
    • /
    • 1998
  • 결정결함의 밀도가 낮은 GaN epitaxy 막을 MOCVD(metal organic chemical vapour deposition) 방법에 의해 성장시켰다. 기판은 6H-SiC를 사용하였으며, AlN과 GaN으로 구성된 이중 buffer 층을 도입하였다. GaN buffer 층은 반응원료인 trimethyl gallium(TMG)과 NH3 가스를 교호식펄스공급(alternating pulsative supply, APS)방법에 의해 만들었다. AlN buffer/6H-SiC 위에 초기단계에 형성되는 GaN 섬은 APS처리에 의해 크기가 커지는 것을 AFM(atomic force microscope)으로 관찰하였다. Buffer 층의 역할은 그 위에 성막시킨 GaN epitaxy 막의 결정성과 결함밀도에 의해 조사하였다. 성막된 GaN의 결정구조와 결정성은 DCXRD(double crystal X-ray diffractormeter)에 의해 측정되었다. 결정결함은 EPD(etching pit density)를 측정하는 방법으로 알칼리혼합용에서 처리된 막을 SEM(scanning electron microscope)으로 관찰하였다.

  • PDF

Indium and Gallium-Mediated Addition Reactions

  • Lee, Phil-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.17-28
    • /
    • 2007
  • Indium and gallium have emerged as useful metals in organic synthesis as a result of its intriguing chemical properties of reactivity, selectivity, and low toxicity. Although indium belongs to a main metal in group 13, its first ionization potential energy is very low and stable in H2O and O2. Therefore, indium-mediated organic reactions are of our current interest. On the basis of these properties of indium, many efficient indium-mediated organic reactions have been recently developed, such as the addition reactions of allylindium to carbonyl and iminium groups, the indium-mediated synthesis of 2-(2-hydroxyethyl)homoallenylsilanes, the indiummediated allylation of keto esters with allyl halides, sonochemical Reformatsky reaction using indium, the indium-mediated selective introduction of allenyl and propargyl groups at C-4 position of 2-azetidinones, the indium-mediated Michael addition and Hosomi-Sakurai reactions, the indium-mediated β-allylation, β- propargylation and β-allenylation onto α,β-unsaturated ketones, the highly efficient 1,4-addition of 1,3-diesters to conjugated enones by indium and TMSCl, and the intramolecular carboindation reactions. Also, we found gallium-mediated organic reactions such as addition reactions of propargylgallium to carbonyl group and regioselective allylgallation of terminal alkynes.

Recovery of Gallium from Zinc Smelting Residues by Alkali Leaching (아연제련잔사의 알칼리 침출에 의한 갈륨의 회수)

  • 김성규;이화영;오종기
    • Resources Recycling
    • /
    • v.9 no.3
    • /
    • pp.22-28
    • /
    • 2000
  • A study on the recovery of gallium from zinc residues is carried out by alkali leaching using NaOH. The results show that in case of alkali leaching of zinc residues, Zn, K and Si are mainly leached out and Fe and other base metals are scarcely leached out, which results in that gallium is easily recovered by solvent extraction. The leaching efficiency of gallium increases with increasing alkali concentration and solid density. Especially, alkali consumption is considerably reduced by washing the zinc residues with water before leaching in order to eleminate the soluble zinc compounds. The gallium from zinc residues is found to be leached out with a recovery of 80% or higher for 2hrs leaching with 1~1.25 M/L NaOH solution and solid density 333 g/L at $25^{\circ}C$.

  • PDF

Dipole- and Loop-Mode Transformable Origami Paper Antenna (다이폴 상태와 루프 상태로 변환 가능한 종이접기 방식의 종이 안테나)

  • Lee, Dongju;Seo, Yunsik;Lim, Sungjoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.1
    • /
    • pp.8-13
    • /
    • 2016
  • A pattern-switchable origami antenna is designed with paper using inkjet-printing technology. The proposed antenna can be switched between loop and dipole antenna modes by folding and unfolding the paper, respectively. The proposed antenna is designed for the resonant frequencies of both modes to be 1.85 GHz. Eutectic gallium-indium liquid metal is introduced in order to avoid cracks in the conductive ink when the paper is folded. The performance of the proposed antenna is demonstrated through simulation and measurement results and antenna gain of dipole-mode and loop-mode are -4 dBi and -5 dBi, respectively. Also, the nulls of both dipole and loop modes compensate nulls from each mode.

X-band RADAR Reflected Signal Measurement of Gallium-based Liquid Metal (갈륨에 기초한 액체금속 X밴드 레이더 반사신호 측정)

  • Minhyeok Kim;Sehyeok Kang;Seok-Joo Doo;Daeyoung Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.246-251
    • /
    • 2023
  • RADAR(Radio Detection and Ranging) is an important system for surveillance and reconnaissance by detecting a reflected signal which obtains the range from the radar to the target, and the velocity of the target. The magnitude of the reflected signal varies due to the radar cross section of the target, characteristic of the transmission and reception antenna, distance between the radar and the target, and power and wavelength of the transmitted signal. Thus, the RCS is the important characteristic of the target to determine if the target can be observed by the RADAR system. It is based on the material and shape of the target. We have measured the reflection signal of a simple square-shaped (20 × 20 cm) target made of a new material, a gallium-based liquid metal alloy and compared that of well-known metals including copper, aluminum. The magnitude of reflected signal of the aluminum target was the largest and it was 2.4 times larger than that of the liquid metal target. We also investigated the effect of the shape by measuring reflectance of the F-22 3D model(~1/95 ratio) target covered with/without copper, aluminium, and liquid metal. The largest magnitude of the reflected signal measured from side-view with the copper-covered F-22 model was 2.6 times greater than that of liquid metal. The reflectance study of the liquid metal would be helpful for liquid metal-based frequency selective surface or metamaterials.

Efficient excitation and amplification of the surface plasmons

  • Iqbal, Tahir
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1381-1387
    • /
    • 2018
  • One dimensional (1D) grating has been fabricated (using focused ion beam) on 50 nm gold (Au) film deposited on higher refractive index Gallium phosphate (GaP) substrate. The sub-wavelength periodic metal nano structuring enable to couple photon to couple with the surface plasmons (SPs) excited by them. These grating devices provide the efficient control on the SPs which propagate on the interface of noble metal and dielectric whose frequency is dependent on the bulk electron plasma frequency of the metal. For a fixed periodicity (${\Lambda}=700 nm$) and slit width (w = 100 nm) in the grating device, the efficiency of SPP excitation is about 40% compared to the transmission in the near-field. Efficient coupling of SPs with photon in dielectric provide field localisation on sub-wavelength scale which is needed in Heat Assisted Magnetic recording (HAMR) systems. The GaP is also used to emulate Vertical Cavity Surface emitting laser (VCSEL) in order to provide cheaper alternative of light source being used in HAMR technology. In order to understand the underlying physics, far-and near-field results has been compared with the modelling results which are obtained using COMSOL RF module. Apart from this, grating devices of smaller periodicity (${\Lambda}=280nm$) and slit width (w = 22 nm) has been fabricated on GaP substrate which is photoluminescence material to observe amplified spontaneous emission of the SPs at wavelength of 805 nm when the grating device was excited with 532 nm laser light. This observation is unique and can have direct application in light emitting diodes (LEDs).

Study for the Liquid Metals Enabled Stretchable Electronics (액체금속을 활용한 신축성 전자소재 개발 동향)

  • Joo Hyung Lee;Yoon Su Lee;Jin Yoo;Seoyeon Won;Taehwan Lim
    • Journal of Industrial Technology
    • /
    • v.43 no.1
    • /
    • pp.25-31
    • /
    • 2023
  • Stretchable and flexible electronics that comply with dynamic movements and micromotion of the human tissues can enable real-time monitoring of physiologic signals onto the human skin and in the brain, respectively. Especially, gallium based liquid metal stretchable electronics can offer human-interactive biosensors to monitor various physiologic parameters. However, the liquid-like nature, surface oxidation and contamination by organic materials, and low biostability of the liquid metals have still limited the long-term use as bioelectronics. Here we introduced electrochemical deposition without oxidation pathways to overcome these practical challenges in liquid metal bioelectronics. CNT/PDDA composite with reduction way and PEDOT:BF4 with oxidation way under organic solvent are suggested as rationally designed material engineering approaches. We confirmed that the structures with the soft, flexible, and stretchable liquid metal platform can successfully detect dopamine with a high sensitivity and selectivity, record neural signals including action potentials without scar formation, and monitor physiologic signals such as EMG and ECG.