• 제목/요약/키워드: Gallium doping

검색결과 33건 처리시간 0.033초

갈륨인 단결정 성장으로 이룩한 적색 발광 다이오드의 제작 (The Fabrication of Gallium Phosphide Red Light Emitting Diode by Liquid Phase Epitaxy)

  • 김종국;민석기
    • 대한전자공학회논문지
    • /
    • 제10권3호
    • /
    • pp.1-9
    • /
    • 1973
  • 파일롯트 램프와 숫자표시를 목적으로 국내에서 처음으로 화합물반도체인 갈륨 인을 사용해서 발광다이오드를 만들었다. 이같이 만든 다이오드는 밝고 선명한 붉은 빛을 냈으며 발광하는데 필요한 순방향 바이아스 전류는 5mA 이하였다. 다이오드의 p-n 접합면은 n형 GaP 단결정 기판에 liquid phase epitaxy방법으로 성장시켰고 이때의 Ga 용액의 온도는 약 1300°K정도를 유지했다. 이렇게 하여 제조된 p-n 접합체에 wire bonding으로 ohmic contact시켜 다이오드를 제조했다. 칼륨인 발광다이오드는 매우 적은 전류로 발광되는 장점과 성장 반웅시 질소를 불순물로 doping시키면 녹색으로 발광되는 장점을 갖고 있으므로 앞으로 양산화의 전망이 매우 밝다.

  • PDF

Quality evaluation of diamond wire-sawn gallium-doped silicon wafers

  • Lee, Kyoung Hee
    • 한국결정성장학회지
    • /
    • 제23권3호
    • /
    • pp.119-123
    • /
    • 2013
  • Most of the world's solar cells in photovoltaic industry are currently fabricated using crystalline silicon. Czochralski-grown silicon crystals are more expensive than multicrystalline silicon crystals. The future of solar-grade Czochralski-grown silicon crystals crucially depends on whether it is usable for the mass-production of high-efficiency solar cells or not. It is generally believed that the main obstacle for making solar-grade Czochralski-grown silicon crystals a perfect high-efficiency solar cell material is presently light-induced degradation problem. In this work, the substitution of boron with gallium in p-type silicon single crystal is studied as an alternative to reduce the extent of lifetime degradation. The diamond-wire sawing technology is employed to slice the silicon ingot. In this paper, the quality of the diamond wire-sawn gallium-doped silicon wafers is studied from the chemical, electrical and structural points of view. It is found that the characteristic of gallium-doped silicon wafers including texturing behavior and surface metallic impurities are same as that of conventional boron-doped Czochralski crystals.

극한 환경용 반도체 기술 동향 (Technical Trends of Semiconductors for Harsh Environments)

  • 장우진;문재경;이형석;임종원;백용순
    • 전자통신동향분석
    • /
    • 제33권6호
    • /
    • pp.12-23
    • /
    • 2018
  • In this paper, we review the technical trends of diamond and gallium oxide ($Ga_2O_3$) semiconductor technologies among ultra-wide bandgap semiconductor technologies for harsh environments. Diamond exhibits some of the most extreme physical properties such as a wide bandgap, high breakdown field, high electron mobility, and high thermal conductivity, yet its practical use in harsh environments has been limited owing to its scarcity, expense, and small-sized substrate. In addition, the difficulty of n-type doping through ion implantation into diamond is an obstacle to the normally-off operation of transistors. $Ga_2O_3$ also has material properties such as a wide bandgap, high breakdown field, and high working temperature superior to that of silicon, gallium arsenide, gallium nitride, silicon carbide, and so on. In addition, $Ga_2O_3$ bulk crystal growth has developed dramatically. Although the bulk growth is still relatively immature, a 2-inch substrate can already be purchased, whereas 4- and 6-inch substrates are currently under development. Owing to the rapid development of $Ga_2O_3$ bulk and epitaxy growth, device results have quickly followed. We look briefly into diamond and $Ga_2O_3$ semiconductor devices and epitaxy results that can be applied to harsh environments.

3C-SiC/Si 에피층 성장과 Ga 불순물 효과

  • 박국상;김광철;김선중;서영훈;남기석;이형재;나훈균;김정윤;이기암
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1997년도 Proceedings of the 13th KACG Technical Meeting `97 Industrial Crystallization Symposium(ICS)-Doosan Resort, Chunchon, October 30-31, 1997
    • /
    • pp.141-144
    • /
    • 1997
  • High quality 3C-SiC epilayer was grown on Si(111) at 125$0^{\circ}C$ using chemical vapor deposition(CVD) technique by pyrolyzing tetramethylsilane(TMS). 3C-SiC epilayer was doped by tetramethylgallium(TMGa) during the CVD growth. The crystallinity of 3C-SiC was significantly enhanced by doping the gallium impurity.

  • PDF

p-PEDOT/n-GZO heterojunction의 전기적 특성 (Electrical characteristics of p-PEDOT/n-GZO heterojunction)

  • 이재상;박동훈;구상모;이상렬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1332_1333
    • /
    • 2009
  • The electrical properties of an inorganic/organic heterojunction has been investigated by spin coating the p-type polymer poly(3,4 ethylenedioxythiophene) : poly(styrenesulfonate) (PEDOT:PSS) on an n-type gallium doping zinc oxide (GZO) film. Current-voltage (I-V) characteristics of the fabricated heterojunction diodes have a good rectifying characteristics. The barrier height is calculated 0.8 eV.

  • PDF

A Study of the Quantitative Relationship of Charge-Density Changes and the Design Area of a Fabricated Solar Cell

  • Jeon, Kyeong-Nam;Kim, Seon-Hun;Kim, Hoy-Jin;Kim, In-Sung;Kim, Sang-Hyun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권5호
    • /
    • pp.204-208
    • /
    • 2011
  • In this paper, the design area of a fabricated solar cell has been analyzed with respect to its charge density. The mathematical calculation used for charge-density derivation was obtained from the 2001 version of a MATHCAD program. The parameter range for the calculations was ${\pm}1{\times}10^{17}cm^{-3}$, which is in the normal parameter range for n-type doping impurities ($7.0{\times}10^{17}cm^{-3}$) and also for p-type impurities ($4.0{\times}10^{17}cm^{-3}$). Therefore, it can be said that the fabricated solar-cell design area has a direct effect on charge-density changes.

불순물에 의한 CdTe단결정의 전기적 특성 (Electrical Properties of Single Crystal CdTe by Impurity)

  • 박창엽
    • 전기의세계
    • /
    • 제20권2호
    • /
    • pp.9-14
    • /
    • 1971
  • N type single crystal CdTe is grown by doping Gallium as 0.01 percent, by using zone melting method. And also p type CdTe is grown by doping Ag, Sb, and Te as 0.01%. Resistivity and Concentration of the n.p type single crystal are measured. And then Li ions are implanted on the n type CdTe by high voltage accellerator with different amount of impurity. Indium is evaporated on the p type in high vacuum condition. These sample are heated so as to make P-N Junction in Argon gas flow. Electrical properties for solar cell are investigated. Photovoltage and current are found to be varyed according to following factor: 1) amount of impurity 2) diffusion thickness 3) temperature and time for making P-N junction. Efficiency of the P-N Junction evaporated Indium is 6.5 when it is heated at 380.deg. C for 15 minutie.

  • PDF

후열 처리에 따른 Ga2O3/4H-SiC 이종접합 다이오드 특성 분석 (Characteristics of Ga2O3/4H-SiC Heterojunction Diode with Annealing Process)

  • 이영재;구상모
    • 한국전기전자재료학회논문지
    • /
    • 제33권2호
    • /
    • pp.155-160
    • /
    • 2020
  • Ga2O3/n-type 4H-SiC heterojunction diodes were fabricated by RF magnetron sputtering. The optical properties of Ga2O3 and electrical properties of diodes were investigated. I-V characteristics were compared with simulation data from the Atlas software. The band gap of Ga2O3 was changed from 5.01 eV to 4.88 eV through oxygen annealing. The doping concentration of Ga2O3 was extracted from C-V characteristics. The annealed oxygen exhibited twice higher doping concentration. The annealed diodes showed improved turn-on voltage (0.99 V) and lower leakage current (3 pA). Furthermore, the oxygen-annealed diodes exhibited a temperature cross-point when temperature increased, and its ideality factor was lower than that of as-grown diodes.

Magnetic Microstructures and Corrosion Behaviors of Nd-Fe-B-Ti-C Alloy by Ga Doping

  • Wu, Qiong;Zhang, Pengyue;Ge, Hongliang;Yan, Aru;Li, Dongyun
    • Journal of Magnetics
    • /
    • 제18권3호
    • /
    • pp.240-244
    • /
    • 2013
  • The influences of Gallium doping on the magnetic microstructures and corrosion behaviors of Nd-Fe-B-Ti-C alloys are investigated. The cooling rate for obtaining fully amorphous structure is raised, and the glassforming ability is improved by the Ga addition. The High Resolution Transmission Electron Microscopy image shows that the ${\alpha}$-Fe and $Fe_3B$ soft magnetic phases become granular surrounded by the $Nd_2Fe_{14}B$ hard magnetic phase. The rms and $({\Delta}{\varphi})_{rms}$ value of Nd-Fe-B-Ti-C nanocomposite alloy thick ribbons in the typical topographic and magnetic force images detected by Magnetic Force Microscopy(MFM) decreases with 0.5 at% Ga addition. The corrosion resistances of $Nd_9Fe_{73}B_{12.6}C_{1.4}Ti_{4-x}Ga_x$ (x = 0, 0.5, 1) alloys are enhanced by the Ga addition. It can be attributed to the formation of more amorphous phases in the Ga doped samples.