• Title/Summary/Keyword: Galileo satellite navigation system

Search Result 80, Processing Time 0.023 seconds

An Analysis of Code Tracking Bias for Civilian Signals in GNSS (범역항법위성시스템 민간용신호의 부호동기추적편이 분석)

  • Yoo, Seung-Soo;Kim, Yeong-Moon;Kim, Jun-Tae;Kim, Sun-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1C
    • /
    • pp.123-129
    • /
    • 2010
  • In this paper, we analyze the code tracking biases of single and double early-minus-late processing schemes which are widely used code tracking method for global navigation satellite systems. The code tracking bias which results from the distortion in symmetry of correlation values is arisen in the presence of multipath signals. To analyze them, two civil signals which are spreading signals modulated by binary phase shift keying and binary offset carrier are considered.

A Detailed Design of Software-Based GNSS Simulation Tool (위성항법 신호생성 및 수신처리 시뮬레이션 툴 상세설계)

  • Lee, Sang-Uk;Lee, Jae-Eun;Kim, Tae-Hee;Jeong, Seong-Kyun;Park, Han-Earl;Kim, Jae-Hoon
    • Journal of Satellite, Information and Communications
    • /
    • v.4 no.1
    • /
    • pp.8-13
    • /
    • 2009
  • Software-Based GNSS Simulation Tool is being developed by ETRI as a part of development of software-based GNSS Test & Evaluation Facility which will provide test and evaluation environment for various software level application and navigation algorithm in GNSS. The simulation tool will provide digitized GNSS signal generator and receiver including GPS and Galileo. The detailed design and module implementation for the Software GNSS signal generation and signal processing simulation tool and its modular implementation is presented in this paper.

  • PDF

Study on for Simulation of GNSS Signal Generation (위성항법 신호생성 시뮬레이터 구현을 위한 신호생성 알고리즘 연구)

  • Kim, Tae-Hee;Lee, Jae-Eun;Lee, Sang-Uk;Kim, Jae-Hoon;Hwang, Dong-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.11
    • /
    • pp.1148-1156
    • /
    • 2009
  • ETRI has developed GNSS digitized IF signal generator for providing test and evaluation environment for various software level application and navigation algorithm in Global Navigation Satellite System(GNSS). GNSS digitized IF signal generator provides two main capabilities, GPS and Galileo raw data generation and digitized IF signal generation. GNSS digitized IF signal generator consists of five main modules which are GNSS Satellite Orbit Simulation Module, Navigation Message Generation Module, Error Generation Module, GNSS IF Signal Generation Module, and Message & Signal Steering Module. We verified the signal generated by the GNSS signal generation algorithm using software receiver for generation of signal brother to real GNSS signal.

Circumstance Change of GNSS & Application Strategy of Navigation Technology for Modem Weapon System (GNSS 구축 환경변화와 현대무기체계에의 항법기술 사용전략)

  • Ko, Kwang-Soob
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.1
    • /
    • pp.267-275
    • /
    • 2010
  • Recently, the implementation & modern policy for Global Navigation Satellite System have actively been performed by USA, RUSSIA, EU & CHINA. Therefore 100+ navigation satellites will be in orbit by 2015, and the user of military and civil will benefit from the use of a total constellation of 100+ satellites. It means that the deepest dependence to GPS would be declined. In the paper, the latest technology development & implementation policy of GNSS have been analyzed. Specially, we focused on circumstance change of GNSS & application of navigation technology for modem weapon system. Finally, the application strategy of the integrated GNSS is suggested for military and civil as well.

A Positioning Accuracy Analysis in Korea by using NTCM-BC Ionosphere Model (NTCM-BC 전리층 모델을 이용한 한반도 내 위치추정 정확도 분석)

  • Kim, Mingyu;Myung, Jaewook;Kim, Jeongrae
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.5
    • /
    • pp.479-484
    • /
    • 2017
  • A Neustrelitz TEC model (NTCM) developed by Deutsches Zentrum $f{\ddot{u}}r$ Luft- und Raumfahrt (DLR) provides a better accuracy than the global positioning system (GPS) Klobuchar model for predicting ionospheric delay. The NTCM model accuracy is comparable to Galileo NeQuick model, and it has less computation time. The NTCM model uses F10.7 values as a parameter of solar activity function, while a NTCM-Broadcast (NTCM-BC) uses TEC values from a Klobuchar model. For this reason, a NTCM-BC model can be used for real-time ionosphere correction. In this paper, vertical ionospheric delay and GPS positioning errors in Korea by using a NTCM-BC ionosphere model from 2009 to 2014 are analyzed and compared with those of a Klobuchar model. In the 6-year statistics, the vertical ionospheric delay is reduced by 17.7 %, and horizontal and vertical positioning accuracies by the NTCM-BC model are improved by 25.6 % and 6.7 %, respectively, over the Klobuchar model.

A Study for Design and Performance Improvement of the High-Sensitivity Receiver Architecture based on Global Navigation Satellite System (GNSS 기반의 고감도 수신기 아키텍처 설계 및 성능 향상에 관한 연구)

  • Park, Chi-Ho;Oh, Young-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.4
    • /
    • pp.9-21
    • /
    • 2008
  • In this paper, we propose a GNSS-based RF receiver, A high precision localization architecture, and a high sensitivity localization architecture in order to solve the satellite navigation system's problem mentioned above. The GNSS-based RF receiver model should have the structure to simultaneously receive both the conventional GPS and navigation information data of future-usable Galileo. As a result, it is constructed as the multi-band which can receive at the same time Ll band (1575.42MHz) of GPS and El band (1575.42MHz), E5A band (1207.1MHz), and E4B band (1176.45MHz) of Galileo This high precision localization architecture proposes a delay lock loop with the structure of Early_early code, Early_late code, Prompt code, Late_early code, and Late_late code other than Early code, Prompt code, and Late code which a previous delay lock loop structure has. As we suggest the delay lock loop structure of 1/4chips spacing, we successfully deal with the synchronization problem with the C/A code derived from inaccuracy of the signal received from the satellite navigation system. The synchronization problem with the C/A code causes an acquisition delay time problem of the vehicle navigation system and leads to performance reduction of the receiver. In addition, as this high sensitivity localization architecture is designed as an asymmetry structure using 20 correlators, maximizes reception amplification factor, and minimizes noise, it improves a reception rate. Satellite navigation system repeatedly transmits the same C/A code 20 times. Consequently, we propose a structure which can use all of the same C/A code. Since this has an adaptive structure and can limit(offer) the number of the correlator according to the nearby environment, it can reduce unnecessary delay time of the system. With the use of this structure, we can lower the acquisition delay time and guarantee the continuity of tracking.

Performance Verification of Korean Wide Area Differential GNSS Ground Segement (한국형 광역보정시스템(WA-DGNSS) 지상국 성능 검증)

  • Yun, Ho;Han, Duk-Hwa;Kee, Chang-Don
    • Journal of Navigation and Port Research
    • /
    • v.37 no.1
    • /
    • pp.49-54
    • /
    • 2013
  • This paper describes the progress and results of 'Wide Area Differetial GNSS (WA-DGNSS) Development' project which is supported by Korea Ministry of Land, Transport and Maritime Affairs. This project develops the main algorithm of the WA-DGNSS which can guarantee the improved accuracy, availability and integrity all over the Korean peninsula. After the establishment of WA-DGNSS ground system, a real time demonstration using pseudolite will be conducted. Product of this project will be directly utilized in Korean Satellite Based Augmentation System(SBAS) development project which is planned to be started from 2014.

The performance improvement of new correlator architecture in vehicles navigation system (차량요 항법시스템 기반의 새로운 correlator 구조에 따른 성능 향상에 관한 연구)

  • Park, Chi-Ho;Oh, Young-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.12
    • /
    • pp.44-53
    • /
    • 2007
  • In this paper, we focus on the developments of complex location awareness algorithms for real-time location based service and precise/stable localization in the outdoor. In the case of using galileo satellite system along with GPS, several error factor such as the ionosphere can be reduced for an increment of used frequency and visible satellites. Therefore, localization estimation error is no longer having problems with location awareness. But, chips synchronization error induces the error of acquisition and tracking, and the performance of receiver can be decreased. In order to solve this problem, this paper proposes a correlator for performance improvement of receiver in the precise localization.

Design of the Realtime GNSS Surveying Software for Advancement of Geospatial Information Construction Technology

  • Park, Joon Kyu;Jung, Kap Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.4
    • /
    • pp.425-430
    • /
    • 2016
  • Currently, start of the operation US GPS, the Russian Glonass, European Galileo, the Chinese Compass satellites for positioning are celebrating a true GNSS (Global Navigation Satellite System) generation. Korea is building advanced infrastructure such as a national network consisting of CORS (Continuously Operating Reference Station), VRS service for real-time precise positioning and perform continuous upgrading. However, the acquisition of geospatial information using the national infrastructure requires many steps and high dependence on foreign software part in this process. This study contributes to advanced construction technology of geospatial information by design of realtime GNSS surveying system. As a results, it has designed the surveying software that can effectively positioning realtime. Designed realtime surveying software can utilized in various fields.

Preliminary Design of Monitoring and Control Subsystem for GNSS Ground Station (위성항법 지상국 감시제어시스템 예비설계)

  • Jeong, Seong-Kyun;Lee, Jae-Eun;Park, Han-Earl;Lee, Sang-Uk;Kim, Jae-Hoon
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.2
    • /
    • pp.227-238
    • /
    • 2008
  • GNSS (Global Navigation Satellite System) Ground Station monitors navigation satellite signal, analyzes navigation result, and uploads correction information to satellite. GNSS Ground Station is considered as a main object for constructing GNSS infra-structure and applied in various fields. ETRI (Electronics and Telecommunications Research Institute) is developing Monitoring and Control subsystem, which is subsystem of GNSS Ground Station. Monitoring and Control subsystem acquires GPS and Galileo satellite signal and provides signal monitoring data to GNSS control center. In this paper, the configurations of GNSS Ground Station and Monitoring and Control subsystem are introduced and the preliminary design of Monitoring and Control subsystem is performed. Monitoring and Control subsystem consists of data acquisition module, data formatting and archiving module, data error correction module, navigation solution determination module, independent quality monitoring module, and system operation and maintenance module. The design process uses UML (Unified Modeling Language) method which is a standard for developing software and consists of use-case modeling, domain design, software structure design, and user interface structure design. The preliminary design of Monitoring and Control subsystem enhances operation capability of GNSS Ground Station and is used as basic material for detail design of Monitoring and Control subsystem.