• Title/Summary/Keyword: Galerkin Finite Element Method

Search Result 248, Processing Time 0.031 seconds

A Numerical Study on Shock Wave Turbulent Boundary Layer Interactions in High-Speed Flows (고속 흐름에서의 충격파와 난류경계층의 상호작용에 관한 수치적 연구)

  • Mun, Su-Yeon;Son, Chang-Hyeon;Lee, Chung-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.322-329
    • /
    • 2001
  • A study of the shock wave turbulent boundary layer interaction is presented. The focus of the study is the interactions of the shock waves with the turbulent boundary layer on the falt plate. Three examples are investigated. The computations are performed, using mixed explicit-implicit generalized Galerkin finite element method. The linear equations at each time step are solved by a preconditioned GMRES algorithm. Numerical results indicate that the implicit scheme converges to the asymptotic steady state much faster than the explicit counterpart. The computed surface pressures and skin friction coefficients display good agreement with experimental data. The flowfield manifests a complex shock wave system and a pair of counter-rotating vortices.

Heat Transfer Analysis and Experiments of Reinforced Concrete Slabs Using Galerkin Finite Element Method (Galerkin 유한요소법을 이용한 철근콘크리트 슬래브의 열전달해석 및 실험)

  • Han, Byung-Chan;Kim, Yun-Yong;Kwon, Young-Jin;Cho, Chang-Geun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.567-575
    • /
    • 2012
  • A research was conducted to develop a 2-D nonlinear Galerkin finite element analysis of reinforced concrete structures subjected to high temperature with experiments. Algorithms for calculating the closed-form element stiffness for a triangular element with a fully populated material conductance are developed. The validity of the numerical model used in the program is established by comparing the prediction from the computer program with results from full-scale fire resistance tests. Details of fire resistance experiments carried out on reinforced concrete slabs, together with results, are presented. The results obtained from experimental test indicated in that the proposed numerical model and the implemented codes are accurate and reliable. The changes in thermal parameters are discussed from the point of view of changes of structure and chemical composition due to the high temperature exposure. The proposed numerical model takes into account time-varying thermal loads, convection and radiation affected heat fluctuation, and temperature-dependent material properties. Although, this study considered standard fire scenario for reinforced concrete slabs, other time versus temperature relationship can be easily incorporated.

Two-Dimensional Finite Element Analysis of Stream Water Quality (하천수질(河川水質)의 2차원(次元) 유한요소해석(有限要素解析))

  • Shin, Eung Bai;Suh, Seung Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.3
    • /
    • pp.89-98
    • /
    • 1987
  • Analyzed by using finite element method was 2-dimensional pollutant transtport phenomenon considering longitudinal and lateral direction in river. The Galerkin's finite element method based on linear interpolation is used and triangle is adopted as an element. In a number of model test attempts it has been demonstrated that the results calculated by the model are in good agreement with analytical solutions in a simplified channel where there is a known solution available. Actual application of the model is attempted along the 9km reach of the Han River considering the influx of the Tan Cheon and the Joongryang Cheon. The resultant 2-dimensional BOD concentrations profile in the reach is exhibiting more realistically the field situations than conventional 1-dimensional models are.

  • PDF

Modeling and analysis of dynamic heat transfer in the cable penetration fire stop system by using a new hybrid algorithm (새로운 혼합알고리즘을 이용한 CPFS 내에서의 일어나는 동적 열전달의 수식화 및 해석)

  • Yoon En Sup;Yun Jongpil;Kwon Seong-Pil
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.4 s.21
    • /
    • pp.44-52
    • /
    • 2003
  • In this work dynamic heat transfer in a CPFS (cable penetration fire stop) system built in the firewall of nuclear power plants is three-dimensionally investigated to develop a test-simulator that can be used to verify effectiveness of the sealant. Dynamic heat transfer in the fire stop system is formulated in a parabolic PDE (partial differential equation) subjected to a set of initial and boundary conditions. First, the PDE model is divided into two parts; one corresponding to heat transfer in the axial direction and the other corresponding to heat transfer on the vertical planes. The first PDE is converted to a series of ODEs (ordinary differential equations) at finite discrete axial points for applying the numerical method of SOR (successive over-relaxation) to the problem. The ODEs are solved by using an ODE solver In such manner, the axial heat flux can be calculated at least at the finite discrete points. After that, all the planes are separated into finite elements, where the time and spatial functions are assumed to be of orthogonal collocation state at each element. The initial condition of each finite element can be obtained from the above solution. The heat fluxes on the vertical planes are calculated by the Galerkin FEM (finite element method). The CPFS system was modeled, simulated, and analyzed here. The simulation results were illustrated in three-dimensional graphics. Through simulation, it was shown clearly that the temperature distribution was influenced very much by the number, position, and temperature of the cable stream, and that dynamic heat transfer through the cable stream was one of the most dominant factors, and that the feature of heat conduction could be understood as an unsteady-state process.

  • PDF

SUPERCONVERGENCE OF HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR SECOND-ORDER ELLIPTIC EQUATIONS

  • MOON, MINAM;LIM, YANG HWAN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.4
    • /
    • pp.295-308
    • /
    • 2016
  • We propose a projection-based analysis of a new hybridizable discontinuous Gale-rkin method for second order elliptic equations. The method is more advantageous than the standard HDG method in a sense that the new method has higher-order accuracy and lower computational cost, and is more flexible. Notable distinctions of our new method, when compared to the standard HDG emthod, are that our method uses $L^2$-projection and suitable stabilization parameter depending on a mesh size for superconvergence. We show that the error for the solution of the equation converges with order p + 2 when we only use polynomials of degree p + 1 as a finite element space without postprocessing. After establishing the theory, we carry out numerical tests to demonstrate and ensure that the proposed method is effective and accurate in practice.

Finite Element Numerical Analysis on Tidal Characteristic Changes due to Seadike Construction

  • Kwun, Soon-Kuk;Na, Jeong-Woo;Chang, Hyun-Jin
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.2
    • /
    • pp.19-25
    • /
    • 1997
  • Abstract [] The prediction of changes in the tidal regime due to the sea dike closure in the Saemankum area was performed using the nonlinear finite element model, TIDE. Based upon an overall comparison of calibrated model results with available field data, the TIDE model behaves well and is good representation of the hydrodynamic of the Saemankum tidal project area. It is shown that the TIDE model does an excellent job of computing the changes of tidal characteristics resulting in sea dike closure in an estuary area.

  • PDF

Axisymmetric Finite Element Analysis of Decomposing Polymeric Composites and Structures (열경화성 고분자 복합재 구조물의 축대칭 유한요소해석)

  • Lee, Seon-Pyo
    • 연구논문집
    • /
    • s.24
    • /
    • pp.81-96
    • /
    • 1994
  • To investigate failure mechanisms observed in carbon-phenolic thermal insulators, differential equations which govern the decomposition process in a deformable anisotropic porous solid are derived for three-dimensional axisymmetric constructions. The governing equations not only couple the material deformation with pore pressure, but also couple pressure and temperature, which means that heat convected by the pyrolysis gases is properly accounted for. Then the Bubnov-Galerkin finite element method is applied to these equations to transform them into a semidescrete finite element system. A thermal insulation liner in the cowl region under typical operating conditions is analyzed to find a mechanism for plylift. The results from the structural analysis show across-ply failure in the cowl zone. The mechanism for plylift is hypothesized as a sequential procedure : 1) the across-ply failure which is the precursor to plylift and 2) the local fiber buckling caused by generation of excessive in-plane compressive stress. To prevent plylift, the across-ply stress can be reduced by using appropriate material ply angles in cowl zone design.

  • PDF

The Flow Analysis of Jeju Harbor using Moving Boundary Technique (이동경계기법을 이용한 제주항의 유동해석)

  • Kim, Nam-Hyeong;Park, Ji-Hun
    • Journal of Navigation and Port Research
    • /
    • v.27 no.5
    • /
    • pp.539-546
    • /
    • 2003
  • The numerical model of the flow analysis by finite element technique is described. The Galerkin method is employed for spatial discretization Two step explicit finite element scheme is used to discretize the time function, which has advantage in problems treating large numbers of elements and unsteady state. Two dimensional hydrodynamic model considering moving boundary condition is developed. Also it applied flow model which develop on flow portion of ideal fluid in the model flume and verified, and the results of this study confirm the efficiency of moving boundary treatment in Jeju harbor. The computed results have shown the good adaptability of moving boundary condition From these studies, it can be concluded that the present method is a useful and effective tool in tidal flow analysis.

A Finite Element Beam Model Using Shape Functions that Satisfy the Euler Equations (Euler 방정식(方程式)을 만족(滿足)하는 형상함수(形狀凾數)를 이용(利用)한 보 유한요소모(有限要素)모델)

  • Kim, Gyong Chan;Shin, Young Shik;Kim, Sung Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.61-68
    • /
    • 1986
  • A set of the shape functions which perfectly satisfy the homogeneous Euler Equations has been proposed for deep beam problems. A finite element beam model using the proposed shape functions has been derived by the Galerkin weighted residual method and used to analyze the numerical examples without reduced shear integration, to show the accuracy and efficiency of the proposed shape functions. The result shows that the finite element model using the proposed shape functions gives very accurate solutions for both static and free vibration analyses. The concept of the proposed shape functions is thought to be applied for the finite element analysis of the elasto-static problems.

  • PDF

Hybrid finite element model for wave transformation analysis (파랑 변형 해석을 위한 복합 유한요소 모형)

  • Jung Tae Hwa;Park Woo Sun;Suh Kyung Duck
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.209-212
    • /
    • 2002
  • Since Berkhoff proposed the mild-slope equation in 1972, it has widely been used for calculation of shallow water wave transformation. Recently, it was extended to give an extended mild-slope equation, which includes the bottom slope squared term and bottom curvature term so as to be capable of modeling wave transformation on rapidly varying topography. These equations were derived by integrating the Laplace equation vertically. In the present study, we develop a finite element model to solve the Laplace equation directly while keeping the same computational efficiency as the mild-slope equation. This model assumes the vertical variation of wave potential as a cosine hyperbolic function as done in the derivation of the mild-slope equation, and the Galerkin method is used to discretize . The computational domain was discretized with proper finite elements, while the radiation condition at infinity was treated by introducing the concept of an infinite element. The upper boundary condition can be either free surface or a solid structure. The applicability of the developed model was verified through example analyses of two-dimensional wave reflection and transmission. .

  • PDF