• Title/Summary/Keyword: Galerkin 근사방법

Search Result 23, Processing Time 0.017 seconds

The Effect of Internal Flow on Vortex-Induced Vibration of Marine Riser (Riser의 내부유체 흐름이 소용돌이로 인한 Riser 동적반응에 미치는 영향)

  • Hong, Nam-Seeg;Hsiang Wang
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.2
    • /
    • pp.198-208
    • /
    • 1995
  • Combining Iwan-Blevin's model into the approximated form of the nonlinear model derived for the dynamic analysis of the riser system with the inclusion of internal flow, current-vortex model is developed to investigate the effect of internal flow on vortex-induced vibration due to inline current The riser system includes a steadly flow inside the pipe which is modeled as an extensible or inextensible tubular beam. Galerkin's finite element approximation are implemented to derive the matrix equation of equilibrium for the finite element system. The investigations of the effect of internal flow on vibration due to inline current are performed according to the change of various parameters such as top tension, infernal flow velocity. current velocity, and so on. It is found that the effect of internal flow on vibration due to vortex shedding can be controlled by the increase of top tension. However, careful consideration has to be given, in design point in order to avoid the resonance band occurding near vortex shedding frequency, particularly for the long riser.

  • PDF

The Effect of Internal Row on Marine Riser Dynamics (Riser의 내부유체 흐름이 Riser 동적반응에 미치는 영향)

  • Hong, Nam-Seeg
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.1
    • /
    • pp.75-90
    • /
    • 1995
  • A mathematical model for the dynamic analysis of a riser system with the inclusion of internal flow and nonlinear effects due to large structural displacements is developed to investigate the effect of internal flow on marine riser dynamics. The riser system accounts fir the nonlinear boundary conditions and includes a steady flow inside the pipe which is modeled as an extensible or inextensible. tubular beam subject to nonlinear three dimensional hydrodynamic loads such as current or wave excitation. Galerkin's finite element approximation and time incremental operator are implemented to derive the matrix equation of equilibrium for the finite element system and the extensibility or inextensibility condition is used to reduce degree of freedom of the system and the required computational time in the case of a nonlinear model. The algorithm is implemented to develop computer programs used in several numerical applications. The investigations of the effect of infernal flow on riser vibration due to current or wave loading are performed according to the change of various parameters such as top tension, internal flow velocity, current velocity, wave period, and so on. It is found that the effect of internal flow can be controlled by the increase of top tension. However, careful consideration has to be given in the design point particularly for the long riser under the harmonic loading such as waves. And it is also found that the consideration of nonlinear effects due to large structural displacements increases the effect of internal flow on riser dynamics.

  • PDF

Transient Analysis of General Dispersive Media Using Laguerre Functions (라게르 함수를 이용한 일반적인 분산 매질의 시간 영역 해석)

  • Lee, Chang-Hwa;Kwon, Woo-Hyen;Jung, Baek-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.10
    • /
    • pp.1005-1011
    • /
    • 2011
  • In this paper, we present a marching-on-in-degree(MOD) finite difference method(FDM) based on the Helmholtz wave equation for analyzing transient electromagnetic responses in a general dispersive media. The two issues related to the finite difference approximation of the time derivatives and the time consuming convolution operations are handled analytically using the properties of the Laguerre functions. The basic idea here is that we fit the transient nature of the fields, the flux densities, the permittivity with a finite sum of orthogonal Laguerre functions. Through this novel approach, not only the time variable can be decoupled analytically from the temporal variations but also the final computational form of the equations is transformed from finite difference time-domain(FDTD) to a finite difference formulation through a Galerkin testing. Representative numerical examples are presented for transient wave propagation in general Debye, Drude, and Lorentz dispersive medium.