• 제목/요약/키워드: Galactose fermentation

검색결과 108건 처리시간 0.027초

갈락토스-글루코스 혼합당 수소 발효 (Hydrogen Fermentation of the Galactose-Glucose Mixture)

  • 천효창;김상현
    • 한국수소및신에너지학회논문집
    • /
    • 제23권4호
    • /
    • pp.397-403
    • /
    • 2012
  • Galactose, an isomer of glucose with an opposite hydroxyl group at the 4-carbon, is a major fermentable sugar in various promising feedstock for hydrogen production including red algal biomass. In this study, hydrogen production characteristics of galactose-glucose mixture were investigated using batch fermentation experiments with heat-treated digester sludge as inoclua. Galactose showed a hydogen yield compatible with glucose. However, more complicated metabolic steps for galactose utilization caused a slower hydrogen production rate. The existence of glucose aggravated the hydrogen production rate, which would result from the regulation of galactose-utilizing enzymes by glucose. Hydrogen produciton rate at galactose to glucose ratio of 8:2 or 6:4 was 67% of the production rate for galactose and 33% for glucose, which could need approximately 1.5 and 3 times longer hydraulic retention time than galacgtose only condition and glucose only condition, respectively, in continuous fermentation. Hydrogen production rate, Hydrogen yield, and organic acid production at galactose to glucose ratio of 8:2 or 6:4 were 0.14 mL H2/mL/hr, 0.78 mol $H_2$/mol sugar, and 11.89 g COD/L, respectively. Galactose-rich biomass could be usable for hydogen fermenation, however, the fermentation time should be allowed enough.

Induction of Melibiase in Yeast

  • Park, Sang-Shin
    • Journal of Plant Biology
    • /
    • 제7권3호
    • /
    • pp.1-8
    • /
    • 1964
  • Exposing yeast cells with a certain genotype to different inducers, the ability of the yeast cells (Saccharomyces cerevisiae) to obtain enhanced fermentation for carbohydrates was observed. Regardless of the preexposure to any substrate, the inherent character incapable of fermenting a certain carbohydrate was maintained, while utilization of carbohydrates by the cells with a certain gene markers was varied by the previous conditions where they were exposed. Galactose was the best inducer for the cells to elaborate melibiase, even the galactose was not utilized as a substrate. Preexposure to galactose seemed to be necessary for the cells to utilize galactose and melibiose. Galactose fermentation by GA cells was enhanced by the exposure of the cells to galactose, but not to melibiose, raffinose, sucrose or glucose. Delayed fermentation of sucrose by the cells exposed to glucose or melibiose, but not to galactose, was observed. Raffinose fermentation was obtained by the cells with either SU RAF or GA ME genes, but the enhanced fermentation of raffinose seemed to be dependent on which inducer the cells were exposed previously and enzymes induced by the inducer to break either one of the linkages of raffinose molecule, the alpha0galactosidic or the beta-fructo-furanosidic.

  • PDF

Succinic Acid Production by Anaerobiospirillum succiniciproducens ATCC 29305 Growing on Galactose, Galactose/Glucose, and Galactose/Lactose

  • Lee, Pyung-Cheon;Lee, Sang-Yup;Chan, Ho-Nam
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권11호
    • /
    • pp.1792-1796
    • /
    • 2008
  • Succinic acid-producing Anaerobinspirillum succiniciproducens was anaerobically grown on galactose, galactose/glucose, or galactose/lactose in order to study its galactose fermentation. Unlike a previous report, A. succiniciproducens was found to efficiently metabolize galactose as the sole carbon source at a rate of 2.4 g/g-DCW/h and produced succinic acid with as high a yield of 87% as with using glucose. When glucose and galactose were present, A. succiniciproducens metabolized both sugars simultaneously. Furthermore, when lactose and galactose coexisted, lactose did not inhibit the galactose fermentation of A. succiniciproducens. Therefore, co-utilization of galactose and other sugars can improve the productivity and economy of bio-based succinic acid processes.

Production of lactic acid by Lactobacillus paracasei isolated from button mushroom bed

  • Kim, Sun-Joong;Seo, Hye-Kyung;Kong, Won-Sik;Yoon, Min-Ho
    • 한국버섯학회지
    • /
    • 제11권4호
    • /
    • pp.187-193
    • /
    • 2013
  • A galactose fermentation bacterium producing lactose from red seaweed, which was known well to compromise the galactose as main reducing sugar, was isolated from button mushroom bed in Buyeo-Gun, Chungchugnamdo province. The lactic acid bacteria MONGB-2 was identified as Lactobacillus paracasei subsp. tolerans by analysis of 16S rRNA gene sequence. When the production of lactic acid and acetic acid by L. paracasei MONGB-2 was investigated by HPLC analysis with various carbohydrates, the strain MONGB-2 efficiently convert the glucose and galactose to lactic acid with the yield of 18.86 g/L and 18.23 g/L, respectively and the ratio of lactic acid to total organic acids was 1.0 and 0.91 g/g for both substrates. However, in the case of acetic acid fermentation, other carbohydrates besides galactose and red seaweed hydrolysate could not be totally utilized as carbon sources for acetic acid production by the strain. The lactic acid production from glucose and galactose in the fermentation time courses was gradually enhanced upto 60 h fermentation and the maximal concentration reached to be 16-18 g/L from both substrates after 48 h of fermentation. The initial concentration of glucose and galactose were completely consumed within 36 h of fermentation, of which the growth of cell also was maximum level. In addition, the bioconversion of lactic acid from the red seaweed hydrolysate by L. paracasei MONGB-2 appeared to be about 20% levels of the initial substrates concentration and this results were entirely lower than those of galactose and glucose showed about 60% of conversion. The apparent results showed that L. paracasei MONGB-2 could produce the lactic acid with glucose as well as galactose by the homofermentation through EMP pathway.

고농도 Galactose로부터 에탄올을 생산하는 Saccharomyces cerevisiae 균주의 육성 (Development of Ethanol Producing Saccharomyces cerevisiae Strain Using High Concentration Galactose)

  • 김주혜;윤민호
    • Journal of Applied Biological Chemistry
    • /
    • 제54권1호
    • /
    • pp.41-46
    • /
    • 2011
  • 에탄올을 생성하는 고농도 galactose 발효 효모 Saccharomyces cerevisiae No. 9를 선발하여 비교균주인 S. cerevisiae NRRL Y-1528과 함께 glucose, mannose, galactose에서 순치배양하고, 이어서 이들 3개의 탄소원을 기질로 사용하여 발효 효율을 평가하였다. 모균주인 No. 9의 에탄올 생산은 초기 12시간에는 천천히 상승하다가 18시간 후에 가장 높은 수준에 도달하였으며, 그 수율은 $[EtOH]_{max}/Sugar]_{ini}(g/g)$을 퍼센트로 환산하였을 때 glucose, galactose, mannose의 3개 기질에서 비교용 균주 NRRL Y-1528와 비슷한 36~38%로 수준이었고 실험한 3 균주 모두 galactose 발효에 있어서 탄소원의 종류에 따라 순치배양 조건이 에탄올 수율에 영향을 미치지 않았다. 전통적인 EMS 처리에 의하여 모균주인 galactose 발효성 효모 S. cerevisiae No. 9로부터 에탄올 발효력이 향상된 변이주 Mut-5 (SJ1-40), -17 (LK4-25) 및 -24 (LK2-48) 3개주를 선발하였다. 기질인 10, 15, 20% galactose를 이용한 에탄올 발효능을 실험 하였을때 모균주 No. 9 및 변이주에서도 galactose의 농도를 증가시킬수록 감소하는 경향을 나타내었다. Galactose 20% 농도에서 변이주는 모균주보다 에탄올 발효율이 39.9~51.6% 높았으나, 비교용 균주 S. cerevisiae NRRL Y-1528의 에탄올 발효력에는 미치지 못하였다.

Ethanol Production from the Seaweed Gelidium amansii, Using Specific Sugar Acclimated Yeasts

  • Cho, Hyeyoung;Ra, Chae-Hun;Kim, Sung-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권2호
    • /
    • pp.264-269
    • /
    • 2014
  • For the production of ethanol from seaweed as the source material, thermal acid hydrolysis and enzymatic saccharification were carried out for monosugars production of 25.5 g/l galactose and 7.6 g/l glucose using Gelidium amansii. The fermentation was performed with Pichia stipitis KCTC 7228 or Saccharomyces cerevisiae KCCM 1129. When wild P. stipitis and S. cerevisiae were used, the ethanol productions of 11.2 g/l and 6.9 g/l were produced, respectively. The ethanol productions of 16.6 g/l and 14.6 g/l were produced using P. stipitis and S. cerevisiae acclimated to high concentration of galactose, respectively. The yields of ethanol fermentation increased to 0.5 and 0.44 from 0.34 and 0.21 using acclimated P. stipitis and S. cerevisiae, respectively. Therefore, acclimation of yeasts to a specific sugar such as galactose reduced the glucose-induced repression on the transport of galactose.

한국(韓國) 재래식(在來式) 간장의 맛 성분(成分)에 관(關)한 연구(硏究) -제3보(第3報). 간장 숙성중(熟成中) 당류(糖類)에 관(關)하여- (The Taste Compounds of Fermented Ordinary Korean Soysauce Part 3. On the Changes of Sugars in the Process of the Soysauce Preparation)

  • 김종규;강대호
    • 한국식품영양과학회지
    • /
    • 제7권2호
    • /
    • pp.21-24
    • /
    • 1978
  • 한국(韓國) 재래식(在來式) 간장은 옛부터 즐겨 사용(使用)되어온 발효식품중(醱酵食品中)의 하나이다. 이러한 식품(食品)의 맛 성분(成分)으로서 당류(糖類)를 간장 숙성(熟成)과 더불어 분석(分析)하여 다음과 같은 결과를 얻었다. 1. 간장 중 유리당(遊離糖)으로서 xylose, arabinose, glucose, galactose를 검출(檢出)했다. 2. 간장 중 유리당(遊離糖) 가운데서 galactose의 양(量)이 적대적으로 많았다. 3. 이러한 유리당(遊離糖)들은 일반적(一般的)으로 숙성(熟成) $20{\sim}40$일(日)까지 증가(增加)하다가 그후 격감하여 80일경(日傾)에 다시 조금 증가(增加)하고 있는 경향을 나타냈다. 4. 양적(量的)으로 보아서 간장의 감미(甘味)에 유리당중(遊離糖中)에서는 galactose가 주체(主體)가 될 것 같다.

  • PDF

Production of Recombinant Hirudin in Galactokinase-deficient Saccharomyces cerevisiae by Fed-batch Fermentation with Continuous Glucose Feeding

  • Srinivas Ramisetti;Kang, Hyun-Ah;Rhee, Sang-Ki;Kim, Chul-Ho
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제8권3호
    • /
    • pp.183-186
    • /
    • 2003
  • The artificial gene coding for anticoagulant hirudin was placed under the control of the GAL 10 promoter and expressed in the galactokinase-deficient strain (Δgal1) of Saccharomyces cerevisiae, which uses galactose only as a gratuitous inducer in order to avoid its consumption. For efficient production of recombinant hirudin, a carbon source other than galactose should be provided in the medium to support growth of the Δgal1 strain. Here we demonstrate the successful use of glucose in the fed-batch fermentation of the Δgal1 strain to achieve efficient production of recombinant hirudin, with a yield of up to 400 mg hirudin/L.

김치숙성 중 유리당의 변화 (Changes of Free Sugars in Kimchi during Fermentation)

  • 하재호;허우덕;김영진;남영중
    • 한국식품과학회지
    • /
    • 제21권5호
    • /
    • pp.633-638
    • /
    • 1989
  • 김치숙성 중 유리당의 변화를 GC로서 분석하였다. 김치에 존재하는 주요 유리당은 mannose, fructose, glucose, galactose등이었고 이들은 숙성이 진행됨에 따라 점차 감소한 반면 mannitol은 숙성이 진행됨에 따라 생성되었다가 서서히 감소하였다. 여러종류의 김치 중 유리당의 변화를 비교한 결과 그 변화양상이 비슷하였으며, 이로부터 대부분의 김치는 비슷한 발효기작을 따르는 것 같았다.

  • PDF

Pseudomonas aeruginosa에 의핸 생합성되는 향진균성물질(PAFS)의 생산성 증가 및 생산균주의 배양생리학적 특성 연구 (Enhanced Production of Antifungal Substance(PAFS) Bioxynthesized by Pseudomonas aeruginosa and Examination of Its Physiological Characteristics in Fermentation)

  • 박선옥;송성기;윤권상;정연호;이상종;정용섭;전계택
    • 한국미생물·생명공학회지
    • /
    • 제28권6호
    • /
    • pp.341-348
    • /
    • 2000
  • Selection of high producer strain, optimization of production medium and cultivation in bioreactor system were carried out in order to produce an antifungal substance, PAFS in large amounts which sources and 41 kinds of nitrogen sources, a synthetic medium consisting of fructose(70 g/1) and ammonium sulfate (10g/l) and a complex medium including galactose(30g/l), fructose(20g/l) and cottonseed flour(35g/l) were determined as opti-mized media for PAFS production. In bioreactor studies examining physiological characteristics of the pro- ducer microorganism with the complex medium, typical pattern of diauxic growth was observed as demonstrated by the result that fructose was not used before almost exhaustion on readily utilizable carbon source, galactose. When galactose was supplemented additionally during the fermentation period. PAFS pro-ductivity did no increases any more, indicating that large portion of the added galactose was used for cell growth instead of biosynthesis of the secondary metabolite. It was deduced that PAFS production could be enhananced by employing fed-batch operation in order to overcome the apparent phenomenon of catabolite repression and /or inhibition.

  • PDF