Journal of the Korean Society for Precision Engineering
/
v.22
no.3
s.168
/
pp.170-178
/
2005
The purpose of this study is to develop a gait-event detection system, which is necessary for the cycle-to-cycle FES control of locomotion. Proposed gait event detection system consists of a signal measurement part and gait event detection part. The signal measurement was composed of the sensors and the LabVIEW program for the data acquisition and synchronization of the sensor signals. We also used a video camera and a motion capture system to get the reference gait events. Machine learning technique with ANN (artificial neural network) was adopted for automatic detection of gait events. 2 cycles of reference gait events were used as the teacher signals for ANN training and the remnants ($2\sim5$ cycles) were used fur the evaluation of the performance in gait-event detection. 14 combinations of sensor signals were used in the training and evaluation of ANN to examine the relationship between the number of sensors and the gait-event detection performance. The best combinations with minimum errors of event-detection time were 1) goniometer, foot-switch and 2) goniometer, foot-switch, accelerometer x(anterior-posterior) component. It is expected that the result of this study will be useful in the design of cycle-to-cycle FES controller.
International Journal of Precision Engineering and Manufacturing
/
v.6
no.3
/
pp.37-44
/
2005
Gait control capacity for most trans-femoral prostheses is significantly different from that of a normal person, and training is required for a long period of time in order for a patient to walk properly. People become easily tired when wearing a prosthesis or orthosis for a long period typically because the gait angle cannot be smoothly adjusted during wearing. Therefore, to improve the gait control problems of a trans-femoral prosthesis, the proper gait angle is estimated through surface EMG(electromyogram) signals on a normal leg, then the gait posture which the trans-femoral prosthesis should take is calculated in the neural network, which learns the gait kinetics on the basis of the normal leg's gait angle. Based on this predicted angle, a postural control method is proposed and tested adaptively following the patient's gait habit based on the predicted angle. In this study, the gait angle prediction showed accuracy of over $97\%$, and the posture control capacity of over $90\%$.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.17
no.10
/
pp.2627-2642
/
2023
Parkinson's disease (PD) is a typical, chronic neurodegenerative disease involving the concentration of dopamine, which can disrupt motor activity and cause different degrees of gait disturbance relevant to PD severity in patients. As current clinical PD diagnosis is a complex, time-consuming, and challenging task that relays on physicians' subjective evaluation of visual observations, gait disturbance has been extensively explored to make automatic detection of PD diagnosis and severity rating and provides auxiliary information for physicians' decisions using gait data from various acquisition devices. Among them, wearable sensors have the advantage of flexibility since they do not limit the wearers' activity sphere in this application scenario. In this paper, an attention-based temporal network (ATN) is designed for the time series structure of gait data (vertical ground reaction force signals) from foot sensor systems, to learn the discriminative differences related to PD severity levels hidden in sequential data. The structure of the proposed method is illuminated by Transformer Network for its success in excavating temporal information, containing three modules: a preprocessing module to map intra-moment features, a feature extractor computing complicated gait characteristic of the whole signal sequence in the temporal dimension, and a classifier for the final decision-making about PD severity assessment. The experiment is conducted on the public dataset PDgait of VGRF signals to verify the proposed model's validity and show promising classification performance compared with several existing methods.
Park, Sun-Woo;Sohn, Ryang-Hee;Ryu, Ki-Hong;Kim, Young-Ho
Journal of the Korean Society for Precision Engineering
/
v.27
no.2
/
pp.145-152
/
2010
Gait phase detection is important for evaluating the recovery of gait ability in patients with paralysis, and for determining the stimulation timing in FES walking. In this study, three different motion sensors(tilt sensor, gyrosensor and accelerometer) were used to detect gait events(heel strike, HS; toe off, TO) and they were compared one another to determine the most applicable sensor for gait phase detection. Motion sensors were attached on the shank and heel of subjects. Gait phases determined by the characteristics of each sensor's signal were compared with those from FVA. Gait phase detections using three different motion sensors were valid, since they all have reliabilities more than 95%, when compared with FVA. HS and TO were determined by both FVA and motion sensor signals, and the accuracy of detecting HS and TO with motion sensors were assessed by the time differences between FVA and motion sensors. Results show of that the tilt sensor and the gyrosensor could detect gait phase more accurately in normal subjects. Vertical acceleration from the accelerometer could detect HS most accurately in hemiplegic patient group A. The gyrosensor could detect HS and TO most accurately in hemiplegic patient group A and B. Valid error ranges of HS and TO were determined by 3.9 % and 13.6 % in normal subjects, respectively. The detection of TO from all sensor signals was valid in both patient group A and B. However, the vertical acceleration detected HS validly in patient group A and the gyrosensor detected HS validly in patient group B. We could determine the most applicable motion sensors to detect gait phases in hemiplegic patients. However, since hemiplegic patients have much different gait patterns one another, further experimental studies using various simple motion sensors would be required to determine gait events in pathologic gaits.
The Transactions of the Korean Institute of Electrical Engineers D
/
v.55
no.10
/
pp.452-457
/
2006
In this paper, an algorithm to detect steps in hemiplegic patients using a 3-axis accelerometer a紅ached on the trunk was proposed. The proposed algorithm consisted of the signal pre-processing, the step detector, the classification of steps and the calculation of stride time. Two FIR band-pass filters were designed and steps were measured by the combination of filtered signals in the vertical and the anteroposterior directions. In addition, the classification of steps and the calculation of stride time were computed by using the detected steps and lateral signals. For the experiment, fourteen hemiplegic patients were participated and the linear accelerations of the trunk and foot switch signals were measured synchronously. To evaluate the system performance, the detected steps and initial contacts by the foot switch were compared. The average error between the steps and initial contacts was 0.024ms and the difference of the average stride time was 0.01s. Finally, all gait events were detected exactly. Results showed that the accelerometry could use for the gait evaluation in clinical rehabilitation therapies.
The Transactions of The Korean Institute of Electrical Engineers
/
v.56
no.5
/
pp.990-992
/
2007
The purpose of this study is to develop a practical gait-event detection system which is necessary for the FES (functional electrical stimulation) control of locomotion in paralyzed patients. The system is comprised of a sensor board and an event recognition algorithm. We focused on the practicality improvement of the system through 1) using accelerometer to get the angle of shank and dispensing with the foot-switches having limitation in indoor or barefoot usage and 2) using a rule-base instead of threshold to determine the heel-off/heel-strike events corresponding the stimulation on/off timing. The sensor signals are transmitted through RF communication and gait-events was detected using the peaks in shank angle. The system could detect two critical gait-events in all five paralyzed patients. The standard deviation of the gait events time from the peaks were smaller when 1.5Hz cutoff frequency was used in the derivation of the shank angle from the acceleration signals.
Kim, S.J.;Jeong, E.C.;Song, Y.R.;Yoon, K.S.;Lee, S.M.
Journal of rehabilitation welfare engineering & assistive technology
/
v.6
no.2
/
pp.43-48
/
2012
In this paper, we present the method of gait phases detection using multi biomedical signals during normal gait. Electromyogram(EMG) signals, muscle of thigh angle measurement device and resistive sensors are used for experiments. We implemented a test targeting five adult male and identified the pattern of EMG signal of normal gait. For acquiring the EMG signal, subjects attached surface Ag/AgCl electrodes to quadriceps femoris, biceps femoris, tibialis anterior and gastrocnemius medialis. Resistance sensors are attached to the heel toe and soles of the each feet for measuring attachment state of between feet and ground. Infrared sensors are attached on the thigh and thigh angle measurement device has the range from flection 25 degrees to extension 20 degrees. The results of this paper, The stance and swing phase could be confirmed during the normal gait and be classified in detail the eight steps.
Journal of Institute of Control, Robotics and Systems
/
v.18
no.7
/
pp.644-649
/
2012
This paper proposes the gait phase classifier using backpropagation neural networks method which uses the angle of lower body's joints and ground reaction force as input signals. The classification of a gait phase is useful to understand the gait characteristics of pathologic gait and to control the gait rehabilitation systems. The classifier categorizes a gait cycle as 7 phases which are commonly used to classify the sub-phases of the gait in the literature. We verify the efficiency of the proposed method through experiments.
The Transactions of the Korean Institute of Electrical Engineers D
/
v.54
no.7
/
pp.462-467
/
2005
In this paper, we analyzed normal gait acceleration signal by time series analysis methods. Accelerations were measured during walking using a biaxial accelerometer. Acceleration data were acquired from normal subjects(23 men and one woman) walking on a level corridor of 20m in length with three different walking speeds. Acceleration signals were measured at a sampling frequency of 60Hz from a biaxial accelerometer mounted between L3 and L4 intervertebral area. Each step signal was analyzed using Box-Jenkins method. Most of the differenced normal step signals were modeled to AR(3) and the model didn't show difference for model's orders and coefficients with walking speed. But, tile model showed difference with acceleration signal direction - vertical and lateral. The above results suggested the proposed model could be applied to unit analysis.
International Journal of Control, Automation, and Systems
/
v.3
no.2
/
pp.152-158
/
2005
Commercial lower limb prostheses or orthotics help patients achieve a normal life. However, patients who use such aids need prolonged training to achieve a normal gait, and their fatigability increases. To improve patient comfort, this study proposed a method of predicting gait angle using neural networks and EMG signals. Experimental results using our method show that the absolute average error of the estimated gait angles is $0.25^{\circ}$. This performance data used reference input from a controller for the lower limb orthotic or prosthesis controllers while the patients were walking.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.